TY - JOUR T1 - Evaluation of DNA Reactivity Properties of Zn(II) Phthalocyanine Complex Carrying Tetrakis(benzhydryloxy) Ligand AU - Arslantas, Ali AU - Ağırtaş, Mehmet Salih PY - 2025 DA - June Y2 - 2025 DO - 10.32571/ijct.1642171 JF - International Journal of Chemistry and Technology JO - Int. J. Chem. Technol. PB - Rabia ACEMİOĞLU WT - DergiPark SN - 2602-277X SP - 84 EP - 90 VL - 9 IS - 1 LA - en AB - Using a variety of techniques, the interaction pathway of zinc(II) phthalocyanine with tetrakis(benzhydryloxy) ligand with DNA was assessed in this article. Electrophoresis, thermal denaturation, viscosity, absorption, and fluorescence spectra were employed to investigate the binding mechanism of the ZnPc complex with DNA. The DNA binding constant (Kb) of the ZnPc compound and the thermal melting profile values of the DNA showed that the binding of the ZnPc compound to CT-DNA is governed by an intercalative interaction mechanism. The Kb was computed to be 1.392 106 M-1 for the ZnPc compound, which provides very important clues about the binding mechanism. Fluorescence spectroscopy is another important tool for clarifying the ability of ZnPc to interact with DNA. The information obtained from the fluorescence method confirms that ZnPc interacts with DNA by means of intercalative binding. When the findings obtained from electrophoresis experiments were evaluated, the significant decrease in the intensity of CT-DNA bands revealed that ZnPc interacted with DNA through a physical interaction. The data from the viscosity study confirm data previously obtained by other methods. As a result of their findings, they showed that ZnPc interacts with DNA by intercalative binding. All of these informations suggest that ZnP has DNA interaction properties and could be a potential agent that can be used in the treatment of cancer diseases on the basis of its DNA bonding property. KW - Metallic phthalocyanines KW - DNA binding KW - Zn(II) KW - Thermal melting KW - Intercalative interaction CR - 1. Leznoff, C.C.; Lever, A.B.P. Phthalocyanines: Properties and applications. VCH New York, USA, 1993. CR - 2. Hanack, M.; Lang, M. Adv. Mater. 1994, 6, 819–833. CR - 3. McKeown, N.B. Phthalocyanine materials: synthesis, structure, and function. Cambridge, U.K.; New York, Cambridge University Press, 1998. CR - 4. Kudrevich, S.V.; Galpern, M.G.; Van Lier, J.E. Synth. 1994, 8, 779–781. CR - 5. Mitzel, F.; Fitzgerald, S.; Beeby, A.; Faust, R. Chem. Commun. 2001, 24, 596–2597. CR - 6. Baran, A.; Çol, S.; Karakılıç, E.; Özen, F. Polyhedron 2020, 175, 114205. CR - 7. Maya, E.M.; García Frutos, E.M.; Vázquez, P.; Torres, T.; Martín, G.; Rojo, G.; Zyss, J. J. Phys. Chem. 2003, 107, 2110–2117. CR - 8. Ban, K.; Nishizawa, K.; Ohta, K.; Shirai, H. J. Mater. Chem. 2000, 10, 1083–1090. 9. Wöhrle, D. Adv. Mater. 1993, 5(12), 942–943. 10. Uslan, C.; Sesalan, B.S. Dyes Pigm. 2012, 94, 127–135. CR - 11. Evren, D.; Bura, A.K.; Özçesmeci, I.; Sesalan, B.S. Dyes Pigm. 2013, 96, 475–482. CR - 12. Amitha, G.S.; Vasudevan, S. Polyhedron 2020, 190, 114773. CR - 13. Boucher, L.J. Metal complexes of phthalocyanines. Springer, Boston, MA, 1979. CR - 14. Ağırtaş, M.S.; Öndeş, M.Y.; Cabir, B. Int. J. Chem. Techno. 2018, 2(1), 50-55. CR - 15. Marmur, J. A. J. Mol. Biol. 1961, 3(2), 208–218. CR - 16. Wang, T.; Wang, A.; Zhou, L.; Lu, S.; Jiang, W.; Lin, Y.; Zhou, J.; Wei, S. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 15, 445–451. CR - 17. Arslantas, A; Agirtas, M.S; Gungordu Solgun, D. Gazi Univ. J. Sci. 2025, DOI: 10.35378/gujs.1588595 CR - 18. Arslantas, A; Agirtas, M.S. Chemistryselect 2018, 3(1), 3155-3160. CR - 19. Arslantas, A; Agirtas, M.S.; Durmus, C. Hittite j. Sci. Eng., 2020, 7 (2), 81-87. CR - 20. Baguley, B.C.; Le Bret, M. Biochem. 1984, 23, 937–43. CR - 21. Satyanarayana, S.; Dabrowiak, J.C.; Chaires, J.B.; Neither. Biochem. 1992, 31, 9319–9324. CR - 22. Satyanarayana, S.; Dabrowiak, J.C.; Chaires, J.B. Biochem. 1992, 32, 2573–2584. CR - 23. Barton, J.K.; Goldberg, J.M.; Kumar, C.V.; Turro, N.J. J. Am. Chem. Soc. 1993, 108, 2081–2088. CR - 24. Waring, M.J. J. Mol. Biol. 1965, 13, 269-274. CR - 25. Neyhart, G.A.; Grover, N.; Smith, S.R.; Kalsbeck, W.A.; Fairly, T.A.; Cory, M.; Thorp, H.H. J. Am. Chem. Soc. 1993, 115, 4423-4428. CR - 26. Zipper, H.; Brunner, H.; Bernhagen, J.; Vitzthum, F. Nucleic Acids Res. 2004, 32(12), e103. CR - 27. Umemura, K. Nagami, F.; Okada, T.; Kuroda, R. Nucleic Acids Res. 2004, 28, E39. CR - 28. Shoukry, A.A.; Mohamed, M.S. Spectrochim Acta A Mol Biomol Spectrosc. 2012, 96, 586–593. CR - 29. Lopez, Z.N.C.; Gauna, G.A.; Garcia Vior, M.C.; Awruch, J.; Dicelio, L.E. J. Photochem. Photobiol. B Biol. 2014, 136, 29-33. CR - 30. Thamilarasan, V.; Jayamani, A.; Sengottuvelan, N. Eur. J. Med. Chem. 2015, 89, 266-78. CR - 31. Ma, C.; Tian, D.; Hou, X.; Chang, Y.; Cong, F.; Yu, H.; Du, X.; Du, G. Synth. 2005, 5, 741–748. CR - 32. Keleş, K.; Barut, B.; Biyiklioglu, Z.; Özel, A. Dyes Pigm. 2017, 139, 575-586. CR - 33. Arslantas, A.; Agirtas. M.S. Chemistryselect 2018, 3(11), 3155-3160. CR - 34. Arslantas, A; Agirtas, M.S. J. Chem. Soc. Pakistan, 2024, 46(5), 499-507. UR - https://doi.org/10.32571/ijct.1642171 L1 - https://dergipark.org.tr/en/download/article-file/4619992 ER -