TY - JOUR T1 - Theoretical Investigations of P and P2 Bridged Fullerene C20 TT - P ve P2 Köprülü Fulleren C20’nin Teorik İncelemeleri AU - Mutluer, Kaan AU - Demiray, Ferhat PY - 2025 DA - November Y2 - 2025 DO - 10.35193/bseufbd.1643102 JF - Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi PB - Bilecik Seyh Edebali University WT - DergiPark SN - 2458-7575 SP - 448 EP - 455 VL - 12 IS - 2 LA - en AB - The structural and electronic properties of C20 fullerenes linked by P and P2 were investigated via Density Functional Theory (DFT) in this study. The binding energies of the optimized (C20)2P and (C20P)2 structures were calculated as -41.06 eV and -21.78 eV, respectively. In the (C20)2P structure, it was observed that the inserted phosphorus atom altered the structure of one of the fullerenes, transforming the C20 framework, originally composed of twelve pentagons, into a structure consisting of two hexagons and ten pentagons. In the (C20P)2 structure, it was observed that the P – P bond between the phosphorus atoms ruptured, leading to the formation of a hexagon between the two fullerenes through bonding with carbon atoms. Under these conditions, the pentagonal structures of the fullerenes remained unchanged. The calculated GapHL values for the (C20)2P and (C20P)2 structures are 0.83 eV and 1.33 eV, respectively, indicating that they can be considered as semiconducting materials. KW - Fullerene KW - Molecular Structures KW - Phosphorus KW - Density Functional Theory N2 - Bu araştırmada, C20 fullerenlerin P ve P2 ile bağlanması sonucu oluşan yapısal ve elektronik özellikleri, Yoğunluk Fonksiyonel Teorisi (DFT) kullanılarak analiz edildi. Hesaplamalar sonucunda, optimize edilmiş (C20)2P ve (C20P)2 yapıları için bağlanma enerjileri sırasıyla -41.06 eV ve -21.78 eV olarak belirlenmiştir. (C20)2P yapıda, eklenen fosfor atomunun fullerenlerden birinin yapısını değiştirdiği ve on iki pentagondan oluşan C20 yapısını, iki hekzagon ve on pentagondan oluşan bir formasyona dönüştürdüğü tespit edilmiştir. (C20P)2 yapıda, fosfor atomları arasında oluşan P – P bağının koptuğu ve C atomları ile bağ yaparak iki fulleren arasında bir hekzagon oluşturduğu elde edilmiştir. Bu bağlamda fullerenlerin pentagon yapılarında herhangi bir değişiklik tespit edilmemiştir. (C20)2P ve (C20P)2 yapıları için hesaplanan GapHL değerleri sırası ile 0.83 eV ve 1.33 eV olup, her iki yapı da yarı iletken malzeme olarak değerlendirilebilir. CR - Yoshida, Z., Osawa, E. (1971). Aromaticity. Kyoto: Kagaku Dojin, 22, 174-178 (in Japanese) CR - Bochvar, D. A., Gal’pern, E. G., (1973). Hypothetical systems: carbododecahedron, s-icosahedron, and carbo-s-icosahedron, Doklady Akademii Nauk, 209, 610-612. CR - Heath, J. R., O’Brien, S. C., Zhang, Q., Liu, Y., Curl, R. F., Tittel, F. K., Kroto, H. W., Smalley R. E. (1985). Lanthanum complexes of spheroidal carbon shells. Journal of the American Chemical Society, 107, 25, 7779-7780. CR - Aihara, J. (1995). Bond Resonance Energy and Verification of the Isolated Pentagon Rule. Journal of the American Chemical Society, 117, 14, 4130-4136. CR - Taylor, R., Walton, D. R. M. (1993). The Chemistry of Fullerenes. Nature, 363, 685-693. CR - Omacrsawa, E., (2012). Perspectives of Fullerene Nanotechnology. Springer, 376. CR - Ghavanloo, E., Rafii-Tabar, H., Kausar, A., Giannopoulos, G. I., Fazelzadeh, S. A. (2023). Experimental and computational physics of fullerenes and their nanocomposites: Synthesis, thermo-mechanical characteristics and nanomedicine applications. Physics Reports, 996, 1-116. CR - Prinzbach, H., Weiler, A., Landenberger, P., Wahl, F., Wörth, J., Scott, L. T., Gelmont, M., Olevano, D., v. Issendorff, B. (2000). Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature, 407, 60-63. CR - Ruoff, R. S., Ruoff, A. L. (1991). The bulk modulus of C60 molecules and crystals: A molecular mechanics approach. Applied Physics Letters, 59, 1553-1555. CR - Holczer, K., Klein, O., Huang, S., Kaner, R. B., Fu, K., Whetten, R. L., Diederich F. (1991). Alkali-Fulleride Superconductors: Synthesis, Composition, and Diamagnetic Shielding. Science, 252, 1154-1157. CR - Rad A. S., Ayub K. (2018). Nonlinear optical and electronic properties of Cr-, Ni-, and Ti- substituted C20 fullerenes: A quantum-chemical study. Materials Research Bulletin, 97, 399-404. CR - Kleinpeter E., Koch A. (2010). Probing the exohedral magnetic properties of C20 derivatives by through space NMR shieldings (TSNMRS). Journal of Molecular Structure: THEOCHEM, 939, 1-8. CR - Liu, M., Han, Y., Cheng, Y., Zhao, X., Zheng, H. (2023). Exploring exohedral functionalization of fullerene with automation and Neural Network Potential. Carbon, 213, 118180. CR - Bibikov, A. V., Nikolaev, A. V., Bodrenko, I. V., Borisyuk, P. V. Tkalya, E. V. (2022). Multiple locations of boron atoms in the exohedral and endohedral C60 fullerene. Physical Review A, 105, 022813. CR - Yang Y. F., Gromov E. V., Cederbaum L. S. (2019). Charge separated states of endohedral fullerene Li@C20. The Journal of Chemical Physics. 151, 114306. CR - Wu J., Sun Z., Li X., Ma B., Tian M., Li S. (2011). Theoretical study on the smallest endohedral metallofullerenes: TM@C20 (TM = Ce and Gd). International Journal of Quantum Chemistry, 111, 3786-3792. CR - Manna D., Ghanty T. K. (2012). Theoretical Prediction of Icosahedral U@C20 and Analogous Systems with High HOMO–LUMO Gap. The Journal of Physical Chemistry C, 116, 16716-16725. CR - Bloodworth, S., Whitby, R. J. (2022). Synthesis of endohedral fullerenes by molecular surgery. Communications Chemistry, 5, 121. CR - Li, M., Zhao, R., Dang, J., Zhao, X. (2022). Theoretical Study on the Stabilities, Electronic Structures, and Reaction and Formation Mechanisms of Fullerenes and Endohedral Metallofullerenes. Coordination Chemistry Reviews, 471, 214762. CR - Baei, M. T., Koohi, M., Shariati, M. (2018). Characterization of C20 fullerene and its isolated C20-nGen derivatives (n = 1-5) by alternating germanium atom(s) in equatorial position: A DFT survey. Heteroatom Chemistry, 29, e21410. CR - Koohi, M., Kassaee, M. Z., Ghavami, M., Haerizade, B. N., Ahmadi, A. A. (2015). C20−n Ge n heterofullerenes (n = 5-10) on focus: a density functional perspective. Monatshefte für Chemie – Chemical Monthly, 146, 1409-1417. CR - Baei, M. T., Koohi, M., Shariati, M. (2018). Structure, stability, and electronic properties of AlP nanocages evolved from the world's smallest caged fullerene C20: A computational study at DFT. Journal of Molecular Structure, 1159, 118-134. CR - Koohi, M., Bastami, H. (2023). Investigation of Ti—B nanoheterofullerenes evolved from C20 nanocage through DFT. Chemical Review and Letters, 6, 223-234. CR - Makarova, T., Palacio, F. (2006). Carbon Based Magnetism: An Overview of the Magnetism of Metal Free Carbon-Based Compounds and Materials. Amsterdam: Elsevier. CR - Garg, I., Sharma, H., Kapila, N., Dharamvir, K., Jindal, V. K. (2011). Transition metal induced magnetism in smaller fullerenes (Cn for n ≤ 36). Nanoscale, 3, 217-224. CR - Yoon, M., Yang, S., Wang, E., Zhang, Z. (2007). Charged Fullerenes as High-Capacity Hydrogen Storage Media. Nano Letters, 7(9), 2578-2583. CR - Yoon, M., Yang, S., Hicke, C., Wang, E., Geohegan, D., Zhang, Z. (2008). Calcium as the Superior Coating Metal in Functionalization of Carbon Fullerenes for High-Capacity Hydrogen Storage. Physical Review Letters, 100, 206806. CR - Rad, A. S., Ardjmand, M., Esfahani, M. R., Khodashenas, B. (2021). DFT calculations towards the geometry optimization, electronic structure, infrared spectroscopy and UV–vis analyses of Favipiravir adsorption on the first-row transition metals doped fullerenes; a new strategy for COVID-19 therapy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 247, 119082. CR - Lee, H. K. H., Telford, A. M., Röhr, J. A., Wyatt, M. F., Rice, B., Wu, J., de Castro Maciel, A., Tuladhar, S. M., Speller, E., McGettrick, J., Searle, J. R., Pont, S., Watson, T., Kirchartz, T., Durrant, J. R., Tsoi, W. C., Nelson, J., Li, Z. (2018). The role of fullerenes in the environmental stability of polymer: fullerene solar cells. Energy & Environmental Science, 11, 417-428. CR - Lopez, S. A., Sanchez-Lengeling, B., de Goes Soares, J., Aspuru-Guzik, A. (2017). Design Principles and Top Non-Fullerene Acceptor Candidates for Organic Photovoltaics. Joule, 1, 857-870. CR - Collavini, S., Delgado, J. L. (2018). Fullerenes: the stars of photovoltaics. Sustainable Energy & Fuels, 2, 2480-2493. CR - Mousavi, S. Z., Nafisi, S., Maibach, H. I. (2017). Fullerene nanoparticle in dermatological and cosmetic applications. Nanomedicine: Nanotechnology, Biology and Medicine, 13, 1071-1087. CR - Withers, J. C., Loutfy, R. O., Lowe, T. P. (1997). Fullerene Commercial Vision. Fullerene Science and Technology, 5(1), 1-31. CR - Rivera-Utrilla, J., Sánchez-Polo, M., Gómez-Serrano, V., Álvarez, P. M., Alvim-Ferraz, M. C. M., Dias, J. M. (2011). Activated carbon modifications to enhance its water treatment applications. An overview. Journal of Hazardous Materials, 187, 1-23. CR - Puri, B. R. (1970). Surface complexes on carbons. In Jr. P. L. Walker (Ed.), Chemistry and Physics of Carbon, NY, USA: Marcel Dekker, 191-282. CR - Jansen, R. J. J., van Bekkum, H. (1994). Amination and ammoxidation of activated carbons. Carbon, 32, 1507-1516. CR - Hulicova, D., Kodama, M., Hatori, H. (2006). Electrochemical Performance of Nitrogen-Enriched Carbons in Aqueous and Non-Aqueous Supercapacitors. Chemistry of Materials, 18, 2318-2326. CR - Boehm, H. P. (2008). Catalytic Properties of Nitrogen-Containing Carbons. In P. Serp, J. L. Figueiredo (Eds.), Carbon Materials for Catalysis, Hoboken, NJ, USA: John Wiley & Sons, Inc, 219-265. CR - Bandosz, T. J., Ania, C. O. (2006). Surface chemistry of activated carbons and its characterization. In T. J. Bandosz (Ed.), Activated Carbon Surfaces in Environmental Remediation, Amsterdam: Academic Press, 159-229. CR - Gimblett, F. G. R., Freeman, J. J., Sing, K. S. W. (1989). Element-containing carbon fibres: recent USSR/Eastern European research in fibre technology. Journal of Materials Science, 24, 3799-3812. CR - Benzigar, M. R., Talapeni, S. N., Joseph, S., Ramadass, K., Singh, G., Scaranto, J., Ravon, U., Al-Bahily, K., Vinu, A. (2018). Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications. Chemical Society Reviews, 47, 2680-2721. CR - McKee, D. W. (2021). Oxidation protection of carbon materials. In P. A. Thrower (Ed.), Chemistry & Physics of Carbon, NY, USA: Marcel Dekker, 173-232. CR - Bourbigot, S., Flambard, X. (2002). Heat resistance and flammability of high performance fibres: A review. Fire and Materials, 26, 155-168. CR - Balabanovich, A. I., Pospiech, D., Korwitz, A., Häußler, L., Harnisch, C. (2009). Pyrolysis study of a phosphorus-containing aliphatic-aromatic polyester and its nanocomposites with layered silicates. Polymer Degradation and Stability, 94, 355-364. CR - Gaan, S., Sun, G. (2007). Effect of phosphorus flame retardants on thermo-oxidative decomposition of cotton. Polymer Degradation and Stability, 92, 968-974. CR - Rodríguez-Reinoso, F. (2002) Production and applications of activated carbons. In F. Schüth, K. S. W. Sing, J. Weitkamp (Eds.), Handbook of Porous Solids, Weinheim, Germany: Wiley, 1766-1827. CR - Marsh, H., Rodríguez-Reinoso, F. (2006). Activated Carbon. Oxford: Elsevier Ltd. CR - Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter, 14, 2745-2749. CR - Perdew, J. P., Burke, K., Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868. CR - Ermolaev, V., Miluykov, V., Rizvanov, I., Krivolapov, D., Zvereva, E., Katsyuba, S., Sinyashin, O., Schmutzler, R. (2010). Phosphonium ionic liquids based on bulky phosphines: synthesis, structure and properties. Dalton Transactions, 39, 5564-5571. CR - Naumov, V. A., Naumov, A. V., Samdal, S. (2007). Molecular structure of diphenylchlorophosphine in the gas phase. Russian Journal of General Chemistry, 77, 553-560. CR - Kumar, R., Rani, A. (2011). Structure and electronic properties of Hn@C20 molecule. Physica B: Condensed Matter, 406, 1173-1177. UR - https://doi.org/10.35193/bseufbd.1643102 L1 - https://dergipark.org.tr/en/download/article-file/4624119 ER -