TY - JOUR T1 - Cu-Pd Nanoalaşımlarının Yapısal, Enerjik ve Basınç Özelliklerinin İncelenmesi: Atomistik ve Yoğunluk Fonksiyonel Teorisi Hesaplamalarının Birleştirilmiş Çalışması TT - Investigation of the structural, energetic, and pressure properties of the Cu-Pd nanoalloys: Combined Study of the Atomistic and Density Functional Theory Calculations AU - Yıldırım, Hüseyin PY - 2025 DA - October Y2 - 2025 DO - 10.35414/akufemubid.1643569 JF - Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi PB - Afyon Kocatepe University WT - DergiPark SN - 2149-3367 SP - 1053 EP - 1061 VL - 25 IS - 5 LA - tr AB - İkili nanoalaşımlar daha fazla yapısal çeşitlilikleri nedeniyle ayarlanabilir katalitik özellikler sergilemektedir. Literatürde artan çalışmalar, Pd bazlı ikili heterojen katalizörlerin verimliliği artırmak ve maliyeti düşürmek için tasarlandığını göstermektedir. Bu çalışma, 19 atomlu CunPd19-n (n=0-19) nanoalaşımlarının yapısal, enerjik ve basınç özellikleri üzerindeki kompozisyon etkisini Gupta ve DFT hesaplamalarını birleştirerek göstermeyi amaçlamıştır. Cu ve Pd atomlarının nanoalaşımın iç kısmına veya yüzeyine yerleşme tercihinin atomik yarıçapa göre belirlendiği doğrulanmıştır. CunPd19-n (n=0-19) nanoalaşımlarının hem Gupta hem de DFT düzeyindeki fazlalık enerji analizine göre enerjik olarak karışıma uygun olduğu bulunmuştur. Cu-Pd bağlarının sayısı ile fazlalık enerji arasındaki ilişki doğrulanmıştır. CunPd19-n (n=0-19) nanoalaşımlarının basınç değerlerinin metal nanoparçacıkların doğal basınç modeline uygun olduğu elde edilmiştir. KW - Pd-bazlı nanoalaşımlar KW - Gupta potansiyeli KW - Yoğunluk Fonksiyonel Teorisi KW - Atomik basınç N2 - Binary nanoalloys exhibit tunable catalytic properties due to their further structural variety. Increasing studies in the literature show that Pd-based binary heterogeneous catalysts are designed to improve efficiency and reduce cost. This study aimed to show the composition effect on structural, energetic, and pressure properties of 19-atom CunPd19-n (n=0-19) nanoalloys by combining Gupta and DFT calculations. It was confirmed that the atomic radius determines the preference of Cu and Pd atoms to locate in the inner site or on the surface of the nanoalloy. CunPd19-n (n=0-19) nanoalloys were energetically suitable for mixing according to both Gupta and DFT level excess energy analysis. The relationship between the number of Cu-Pd bonds and excess energy was confirmed. It was obtained that the pressure values of CunPd19-n (n=0-19) nanoalloys were proper for the natural pressure model of metal nanoparticles. CR - Aguilera-Granja, F., Vega, A., Rogan, J., Andrade, X. and Garcia, G., 2006. Theoretical investigation of free standing CoPd nanoclusters as a function of cluster size and stoichiometry in the Pd-rich phase: Geometry, chemical order, magnetism, and metallic behavior. Physical Review B, 74, 224405. https://doi.org/10.1103/PhysRevB.74.224405 CR - Arslan, H., 2008. Structures and energetic of palladium-cobalt binary clusters. International Journal of Modern Physics C, 19, 1243-1255. https://doi.org/10.1142/S0129183108012832 CR - Arslan, H. and Irmak, A.E., 2009. Heat capacity of 13- and 19-atom Pd–Co binary clusters: parallel tempering Monte Carlo study. International Journal of Modern Physics C, 20, 1737–1747. https://doi.org/10.1142/S0129183109014709 CR - Bell, A.T., 2003. The impact of nanoscience on heterogeneous catalysis. Science, 299, 1688-1691. https://doi.org/10.1126/science.1083671. CR - Bochicchio, D., Negro, F. and Ferrando, R., 2013. Competition between structural motifs in gold-platinum nanoalloys. Computational and Theoretical Chemistry, 1021, 177–182. https://doi.org/10.1016/j.comptc.2013.07.017 CR - Bochicchio, D., Ferrando, R., Novakovic, R., Panizon, E. and Rossi, G., 2014. Chemical ordering in magic-size Ag-Pd nanoparticles. Physical Chemistry Chemical Physics, 16, 26478-26484. https://doi.org/10.1039/C4CP02143F CR - Borbon-Gonzalez, D.J., Pacheco-Contreras, R., Posada-Amarillas, A., Schön, J.C., Johnston, R.L. and Montejano-Carrizales, J.M., 2009. Structural insights into 19-atom Pd/Pt nanoparticles: A computational perspective. The Journal of Physical Chemistry C, 113, 15904–15908. https://doi.org/10.1021/jp904518e CR - Calderón Gómez, J.C., Moliner, R. and Lázaro, M.J., 2016. Palladium-based catalysts as electrodes for direct methanol fuel cells: A last ten years review. Catalysts, 6, 130. https://doi.org/10.3390/catal6090130 CR - Casey-Stevens, C.A., Yang, M., Weal, G.R., McIntyre, S.M., Nally, B.K. and Garden, A.L., 2021. A theoretical investigation of 38-atom CuPd clusters: the effect of potential parameterisation on structure and segregation. Physical Chemistry Chemical Physics, 23, 15950-15964. https://doi.org/10.1039/D1CP00810B CR - Choi, K. and Vannice, M.A., 1991. CO oxidation over Pd and Cu catalysts V. Al2O3-supported bimetallic Pd-Cu particles. Journal of Catalysis, 131, 36-50. https://doi.org/10.1016/0021-9517(91)90321-T CR - Diyarbakır, S., Can, H. and Metin, Ö., 2015. Reduced graphene oxide supported CuPd alloy nanoparticles as efficient catalysts for the Sonogashira Cross-Coupling reactions. ACS Applied Materials & Interfaces, 7, 3199–3206. https://doi.org/10.1021/am507764u CR - Feng, X., Shi, D., Jia, J., Wang, C. and Yao, L., 2022. Structural, mixing, electronic and magnetic properties of small Cu-Pd nanoalloy clusters. Materials Today Communications, 31, 103222. https://doi.org/10.1016/j.mtcomm.2022.103222 CR - Fernandez, E.M., Balbas, L.C., Peres, L.A., Michaelian, K. and Garzon, I.L., 2005. Structural properties of bimetallic clusters from density functional calculations. International Journal Of Modern Physics B, 19, 2339-2344. https://doi.org/10.1142/S0217979205030931 CR - Ferrando, R., Jellinek, J. and Johnston, R.L., 2008. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chemical Reviews, 108, 845–910. https://doi.org/10.1021/cr040090g CR - Ferrando, R., 2015. Symmetry breaking and morphological instabilities in core–shell metallic nanoparticles. Journal of Physics: Condensed Matter, 27, 013003. https://doi.org/10.1088/0953-8984/27/1/013003 Ferrando, R., 2016. Structure and properties of nanoalloys. Richard E. Palmer (Series Editör), Elsevier, 1-327. CR - Ferrando, R., 2018. Stress-driven structural transitions in bimetallic nanoparticles. Frontiers of Nanoscience, 12, 189–204. https://doi.org/10.1016/B978-0-08-102232-0.00006-3 CR - Garip, A.K., Arslan, H., Rapetti, D. and Ferrando, R., 2020. A DFT study of chemical ordering and oxygen adsorption in AuPtPd ternary nanoalloys. Materials Today Communications, 25, 1015. https://doi.org/10.1016/j.mtcomm.2020.101545 CR - Garip, A.K. and Taran, S., 2020. Structural and dynamics properties of double icosahedral Pd-Ag-Pt trimetallic clusters. International Journal of Modern Physics B, 34, 2050063. https://doi.org/10.1142/S0217979220500630 CR - Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., De Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P. and Wentzcovitch, R.M., 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics:Condensed Matter, 21, 395502. https://doi.org/10.1088/0953-8984/21/39/395502 CR - Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Nardelli, M.B., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., De Gironcoli, S., Delugas, P., DiStasio Jr, R.A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H., Kokalj, A., Küçükbenli, E., Lazzeri M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N.L., Nguyen, H., De La Roza, A., Paulatto, L., Ponce, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A.P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X. and Baroni, S., 2017. Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics:Condensed Matter, 29, 465901 https://doi.org/10.1088/1361-648X/aa8f79 CR - Guo, S., Zhang, X., Zhu, W., He, K., Su, D., Mendoza-Garcia, A., Ho, S.F., Lu, G. and Sun, S., 2014. Nanocatalyst superior to Pt for oxygen reduction reaction: the case of core/shell Ag(Au)/CuPd nanoparticles. Journal of the American Chemical Society, 136, 15026–15033. https://doi.org/10.1021/ja508256g CR - Janthon, P., Kozlov, S.M., Vines, F., Limtrakul, J. and Illas, F., 2013. Establishing the accuracy of broadly used density functionals in describing bulk properties of transition metals. Journal of Chemical Theory and Computation, 9, 1631–1640. https://doi.org/10.1021/ct3010326 CR - Johnston, R.L., 2012. Metal nanoparticles and nanoalloys. Richard E. Palmer (Series Editör), Frontiers of Nanoscience Book Series, Elsevier, 4–42. CR - Koraychy, E.Y.E. and Ferrando, R., 2023. Growth pathways of exotic Cu@Au core@shell structures: the key role of misfit strain. Nanoscale, 15, 2384–93. https://doi.org/10.1039/D2NR05810C CR - Laasonen, K., Panizon, E., Bochicchio, D. and Ferrando, R., 2013. Competition between Icosahedral Motifs in AgCu, AgNi, and AgCo Nanoalloys: A Combined Atomistic-DFT Study. The Journal of Physical Chemistry C, 117, 26405–26413. https://doi.org/10.1021/jp410379u CR - Leppert, L. and Kümmel, S., 2011. The electronic structure of Gold-Platinum nanoparticles: collecting clues for why they are special. The Journal of Physical Chemistry C, 115, 6694–6702. https://doi.org/10.1021/jp112224t CR - Leppert, L., 2013. Structural and Electronic Properties of Transition Metal Nanoalloys and Magnetic Compounds. CR - Li, M., Xia, Z., Luo, M., He, L., Tao, L., Yang, W., Yu, Y. and Guo, S., 2021. Structural regulation of Pd-based nanoalloys for advanced electrocatalysis. Small Science, 1, 2100061. https://doi.org/10.1002/smsc.202100061 CR - Liu, Q., Zhang, Y. and Qian, P., 2023. Molecular dynamics study on the thermodynamic stability and structural evolution of crown-jewel structured PdCu nanoalloys. RSC Advances, 13, 7963-7971. https://doi.org/10.1039/D2RA08024A CR - Lloyd, L.D., Johnston, R.L., Salhi, S. and Wilson, N.T., 2004. Theoretical investigation of isomer stability in platinum–palladium nanoalloy clusters. Journal of Materials Chemistry, 14, 1691-1704. https://doi.org/10.1039/B313811A CR - Longo; R.C., Noya, E.G. and Gallego, L.J., 2005. A density-functional study of the structures, binding energies and total spins of Ni–Fe clusters using nonlocal norm-conserving pseudopotentials and the generalized gradient approximation. The Journal of Chemical Physics, 122, 084311. https://doi.org/10.1063/1.1849133 CR - Mandal, K., Bhattacharjee, D., Roy, P.S., Bhattacharya, S.K. and Dasgupta, S., 2015. Room temperature synthesis of Pd–Cu nanoalloy catalyst with enhanced electrocatalytic activity for the methanol oxidation reaction. Applied Catalysis A: General, 492, 100–106. https://doi.org/10.1016/j.apcata.2014.12.012 CR - Meng, H., Zeng, D. and Xie, F., 2015. Recent development of Pd-based electrocatalysts for proton exchange membrane fuel cells. Catalysts, 5, 1221-1274. https://doi.org/10.3390/catal5031221 CR - Montejano-Carrizales, J.M., Iniguez, M.P. and Alonso, J.A., 1994. Embedded-atom method applied to bimetallic clusters: The Cu-Ni and Cu-Pd systems. Physical Review B, 49, 16649. https://doi.org/10.1103/PhysRevB.49.16649 CR - Montejano-Carrizales, J.M., Aguilera-Granja, F., Goyhenex, C., Pierron-Bohnes, V. and Morán-López, J.L., 2014. Structural, electronic and magnetic properties of ConPtM−n, for M=13, 19, and 55, from first principles. Journal of Magnetism and Magnetic Materials, 355, 215-224. https://doi.org/10.1016/j.jmmm.2013.10.035 CR - Nasrollahzadeh, M., Jaleh B. and Ehsani, A., 2014. Preparation of carbon supported CuPd nanoparticles as novel heterogeneous catalysts for the reduction of nitroarenes and the phosphine-free Suzuki–Miyaura coupling reaction. New Journal of Chemistry, 39, 1148-1153. https://doi.org/10.1039/C4NJ01788A CR - Pirart, J., Front, A., Rapetti, D., Andreazza-Vignolle, C., Andreazza, P., Mottet, C. and Ferrando, R., 2019. Reversed size-dependent stabilization of ordered nanophases. Nature Communications, 10, 1982. https://doi.org/10.1038/s41467-019-09841-3 CR - Perdew, J.P., Burke, K. and Ernzerhof, M., 1996. Generalized gradient approximation made simple. Physical Review Letters, 77, 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865 CR - Ren, S., Sun, J. and Hao, Y., 2014. Analysis of structures and melting properties of the 19-atom Ni–Co clusters. International Journal of Modern Physics B, 28, 1450171. https://doi.org/10.1142/S0217979214501719 CR - Rey, C., Garcia-Rodeja, J. and Gallego, L.J., 1996. Computer simulation of the ground-state atomic configurations of Ni-Al clusters using the embedded-atom model. Physical Review B, 54, 2942. https://doi.org/10.1103/PhysRevB.54.2942 CR - Roy, P.S., Bagchi, J. and Bhattacharya, S.K., 2012. The size-dependent anode-catalytic activity of nickel-supported Palladium nanoparticles for ethanol alkaline fuel cells. Catalysis Science & Technology, 2, 2302-2310. https://doi.org/10.1039/C2CY20264F CR - Sengar, S.K., Mehta, B.R. and Gupta, G., 2011. Charge transfer, lattice distortion, and quantum confinement effects in Pd, Cu, and Pd–Cu nanoparticles; size and alloying induced modifications in binding energy. Applied Physics Letters, 98, 193115. https://doi.org/10.1063/1.3590272 CR - Sharma, G., Kumar, D., Kumar, A., Al-Muhtaseb, A.H., Pathania, D., Naushad, M. and Mola, G.T., 2017. Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review. Materials Science and Engineering: C, 71, 1216-1230. https://doi.org/10.1016/j.msec.2016.11.002 CR - Skoda, F., Astier, M.P., Pajonk, G.M. and Primet M., 1994. Surface characterization of palladium--copper bimetallic catalysts by FTIR spectroscopy and test reactions. Catalysis Letters, 29, 159-168. https://doi.org/10.1007/BF00814262 CR - Stukowski, A., 2010. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18, 015012. https://doi.org/10.1088/0965-0393/18/1/015012 CR - Stukowski, A., 2012. Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering, 20, 045021. https://doi.org/10.1088/0965-0393/20/4/045021 CR - Sun, L.T., Shi, D.P., Guo, C.Z., Xiao, X.Y. and Bai, J., 2015. A Molecular dynamics study on the physical properties of (CuPd)147 alloy nanoparticles. Applied Mechanics and Materials, 723, 497-501. https://doi.org/10.4028/www.scientific.net/AMM.723.497 CR - Taran, S. and Arslan, H., 2020. Stability and magnetic behaviour of 19-,23-and 26-atom trimetallic Pt-Ni-Ag nanoalloys. Molecular Physics, 118, e1818859. https://doi.org/10.1080/00268976.2020.1818859 CR - Taran, S., Garip, A.K. and Arslan, H., 2020. Chemical ordering effect on structural stability of trimetallic Cu-Au Pt nanoalloys. Physica Scripta, 95, 085404. https://doi.org/10.1088/1402-4896/aba3ab CR - Vanderbilt, D., 1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41, 7892-7895. https://doi.org/10.1103/PhysRevB.41.7892 CR - Wang, L., Yang, Y., Wang, N. and Huang, S., 2016. Theoretical investigation of structural, electronic and magnetic properties for PtnNi55−n (n=0–55) nanoparticles. Computational Materials Science, 117, 15-23. https://doi.org/10.1016/j.commatsci.2016.01.016 CR - Wu, X. and Zhang, Y., 2024. Structural differences of Cu Pd clusters with three potential parameters. Chemical Physics Letters, 842, 141200. https://doi.org/10.1016/j.cplett.2024.141200 CR - Xing, F., Jeon, J., Toyao, T., Shimizu, K. and Furukawa, S., 2019. A Cu–Pd single-atom alloy catalyst for highly efficient NO reduction. Chemical Science, 10, 8292-8298. https://doi.org/10.1039/C9SC03172C CR - Yıldırım, H., 2022. Theoretical investigation of Fe-Rh binary nanoalloys: Chemical ordering and magnetic behavior. International Journal of Modern Physics B, 36, 2250022. https://doi.org/10.1142/S0217979222500229 CR - Yıldırım, H., Kanbur, U. and Arslan, H., 2022. Poly icosahedral Co–Fe–Pd nanoalloy: Isomerism effect on the structural and magnetic properties from DFT. Physica B: Condensed Matter, 641, 414122. https://doi.org/10.1016/j.physb.2022.414122 Yıldırım, H. and Arslan, H., 2024. The structural motif transformations in 71-atom PtAlCu nanoalloys: A combined Atomistic- DFT study. Materials Chemistry and Physics, 322, 129543. https://doi.org/10.1016/j.matchemphys.2024.129543 CR - Yıldırım, H., Taran, S. and Arslan, H., 2024. Understanding the shape effect on the structural, energetic, magnetic, and pressure properties of the 38 atom-Co-Fe-Pd nanoalloys using Gupta and DFT calculations. Physica Scripta, 99, 065414. https://doi.org/10.1088/1402-4896/ad4ca3 UR - https://doi.org/10.35414/akufemubid.1643569 L1 - https://dergipark.org.tr/en/download/article-file/4626141 ER -