TY - JOUR T1 - MANUFACTURING AND CHARACTERIZATION OF SUGAR BEET PULP PARTICLES FILLED POLYPROPYLENE MATRIX BIOCOMPOSITE TT - ŞEKER PANCARI KÜSPESİ PARTİKÜLLERİ DOLGULU POLİPROPİLEN MATRİKS BİYOKOMPOZİTİN ÜRETİMİ VE KARAKTERİZASYONU AU - Şen, İbrahim AU - Gökdemir, Barış AU - Sever, Kutlay AU - Atagür, Metehan PY - 2025 DA - September Y2 - 2025 JF - Mühendislik Bilimleri ve Tasarım Dergisi JO - MBTD PB - Süleyman Demirel University WT - DergiPark SN - 1308-6693 SP - 791 EP - 805 VL - 13 IS - 3 LA - en AB - In this study, Polypropylene (PP) matrix biocomposites were developed with the aim of reducing sugar beet pulp (SP) waste and demonstrating the potential of agricultural waste materials in various applications. Sugar beet pulp extracted from a sugar production factory was subjected to a drying process and then mechanically ground. Following this process, the resultant powdered sugar beet pulp particles were subjected to a sieving process, yielding particles within the size range of 100–250 μm. These particles were then incorporated into the pure PP matrix at filling levels ranging from 5% to 20%. Subsequently, the mechanical (tensile, flexural, DMA), thermal (TGA, DSC), and chemical (FTIR) properties of these biocomposites were investigated. DMA results indicated a notable improvement in storage modulus with increased filler content, supporting the stiffening effect of sugar beet pulp particles. DSC analysis showed minimal change in melting temperature, but a slight decrease in crystallinity degree with higher filler ratios. FTIR spectra confirmed the presence of characteristic functional groups from lignocellulosic sugar beet pulp within the PP matrix, indicating successful incorporation. It was determined that the elastic modulus in the PP matrix biocomposites increased as the amount of sugar beet pulp particles increased. When the thermogravimetric analysis (TGA) data of PP and biocomposites were compared, an increase in the maximum degradation temperature (Tmax) was observed as the SP100 and SP250 ratio increased, while a decrease in the temperature at which degradation began (Ton) was observed. These biocomposites demonstrate promising potential for application in the automotive, packaging, and construction industries as sustainable materials. KW - Biocomposite KW - Characterization KW - Mechanic and thermal properties. KW - Polypropylene (PP) KW - Sugar beet pulp waste N2 - Bu çalışmada, şeker pancarı küspesi (SP) atıklarını azaltmak ve tarımsal atık malzemelerin çeşitli uygulamalardaki potansiyelini göstermek amacıyla polipropilen (PP) matrisli biyokompozitler geliştirilmiştir. Şeker üretim fabrikasından elde edilen şeker pancarı küspesi kurutma işlemine tabi tutulmuş ve ardından mekanik olarak öğütülmüştür. Bu işlemden sonra, elde edilen toz şeker pancarı posası parçacıkları elemeişlemine tabi tutuldu ve 100–250 μm boyut aralığında parçacıklar elde edildi. Bu parçacıklar daha sonra %5 ila %20 arasında değişen dolum seviyelerinde saf PP matrisine katıldı. Daha sonra, bu biyokompozitlerin mekanik (çekme, eğilme, DMA), termal (TGA, DSC) ve kimyasal (FTIR) özellikleri incelenmiştir. DMA sonuçları, dolgu içeriğinin artmasıyla depolama modülünde belirgin bir iyileşme olduğunu göstermiş ve şeker pancarı küspesi parçacıklarının sertleştirici etkisini desteklemiştir. DSC analizi, erime sıcaklığında minimum değişiklik, ancak daha yüksek dolgu oranlarında kristallik derecesinde hafif bir azalma olduğunu gösterdi. FTIR spektrumları, PP matrisinde lignoselülozik şeker pancarı posasından karakteristik fonksiyonel grupların varlığını doğruladı ve bu da başarılı bir birleştirme olduğunu gösterdi. PP matris biyokompozitlerdeki elastik modülün, şeker pancarı posası parçacıklarının miktarı arttıkça arttığı belirlendi. PP ve biyokompozitlerin termogravimetrik analiz (TGA) verileri karşılaştırıldığında, SP100 ve SP250 oranının artmasıyla maksimum bozunma sıcaklığında (Tmax) bir artış gözlemlenirken, bozunmanın başladığı sıcaklıkta (Ton) bir azalma gözlemlenmiştir. Bu biyokompozitler, otomotiv, ambalaj ve inşaat endüstrilerinde sürdürülebilir malzemeler olarak uygulama için umut verici bir potansiyel sergilemektedir. CR - Abdelwahab, M., Misra, M., Mohanty, A.K., 2015. Injection molded biocomposites from polypropylene and sustainable biocarbon: Effect of biocarbon content on surface properties. Composites Part B: Engineering, 83, 210-217. https://doi.org/10.1016/j.compositesb.2015.08.054 CR - Altunbay, S.G., Kangal, A., Gürel, S., 2016. Şeker pancarından biyoetanol üretimi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 25, 334–339. CR - BAŞTÜRK, B., 2021. An Investigation on the Flexural and Thermo-mechanical Properties of CaCO3/Epoxy Composites. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 18, 161–167. https://doi.org/10.18466/cbayarfbe.1015351 CR - Chen, H., Zhang, X., Xu, J., 2024. Enhancing PP composites with lignin nanoparticles: thermal dynamics and life-cycle analysis. Frontiers in Materials, 11,1105643. https://doi.org/10.3389/fmats.2024.1105643 CR - Colom, X., Cañavate, J., Pagès, P., Saurina, J., Carrasco, F., 2000. Changes in crystallinity of the HDPE matrix in composites with cellulosic fiber using DSC and FTIR. Journal of Reinforced Plastics and Composites, 19, 818–830. https://doi.org/10.1106/8RMN-D1HE-75V1-7LN0 CR - Dungani, R., Abdul Khalil, H.P.S., Aprilia, N.A.S., Sumardi, I., Aditiawati, P., Darwis, A., Karliati, T., Sulaeman, A., Rosamah, E., Riza, M., 2017. Bionanomaterial from agricultural waste and its application, in: Cellulose-Reinforced Nanofibre Composites: Production, Properties and Applications. Elsevier, pp. 45–88. https://doi.org/10.1016/B978-0-08-100957-4.00003-6 CR - E. Onishi, S., 2015. Effect of Particle Loading, Temperature and Surface Treatment on Moisture Absorption of CFB Fly Ash Reinforced Thermoset Composite. International Journal of Chemical Engineering and Applications, 6, 12–17. https://doi.org/10.7763/ijcea.2015.v6.442 CR - Essabir, H., Raji, M., Laachachi, A., Bouhfid, R., 2018. Bio-based polypropylene composites reinforced with olive solid waste fibers: Mechanical and thermal properties. Composites Part B: Engineering, 150, 1–10. CR - Essabir, H., Raji, M., Laaziz, S.A., Rodrique, D., Bouhfid, R., Qaiss, A. el kacem, 2018. Thermo-mechanical performances of polypropylene biocomposites based on untreated, treated and compatibilized spent coffee grounds. Composites Part B: Engineering, 149, 1–11. https://doi.org/10.1016/j.compositesb.2018.05.020 CR - Estrada, H., Lee, L.S., 2013. Mechanics of composite materials, The International Handbook of FRP Composites in Civil Engineering. CRC press. https://doi.org/10.1115/1.3423688 CR - Garcia-Rodriguez, J., Lopez, M., Morales, A., 2020. Lignin-based polypropylene composites with improved mechanical properties and reduced carbon emissions. Sustainability, 12(14), 5850. https://doi.org/10.3390/su12145850 CR - Goutianos, S., Peijs, T., Nystrom, B., Skrifvars, M., 2006. Development of flax fibre based textile reinforcements for composite applications. Applied Composite Materials, 13, 199–215. https://doi.org/10.1007/s10443-006-9010-2 CR - Gurunathan, T., Mohanty, S., Nayak, S.K., 2015. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1–25. https://doi.org/10.1016/j.compositesa.2015.06.007 CR - Hansen, B., Borsoi, C., Dahlem Júnior, M.A., Catto, A.L., 2019. Thermal and thermo-mechanical properties of polypropylene composites using yerba mate residues as reinforcing filler. Industrial Crops and Products, 140, 111696. https://doi.org/10.1016/j.indcrop.2019.111696 CR - Kaya, N., Atagur, M., Akyuz, O., Seki, Y., Sarikanat, M., Sutcu, M., Seydibeyoglu, M.O., Sever, K., 2018. Fabrication and characterization of olive pomace filled PP composites. Composites Part B: Engineering, 150, 277–283. https://doi.org/10.1016/j.compositesb.2017.08.017 CR - Kilinc, A.C., Atagur, M., Ozdemir, O., Sen, I., Kucukdogan, N., Sever, K., Seydibeyoglu, O., Sarikanat, M., Seki, Y., 2016. Manufacturing and characterization of vine stem reinforced high density polyethylene composites. Composites Part B: Engineering, 91, 267–274. https://doi.org/10.1016/j.compositesb.2016.01.033 CR - Klyosov, A.A., 2007. Wood-plastic composites. John Wiley & Sons. CR - Kuan, H.T.N., Tan, M.Y., Shen, Y., Yahya, M.Y., 2021. Mechanical properties of particulate organic natural filler-reinforced polymer composite: A review. Journal of Composites Science, 5(3), 87. https://doi.org/10.3390/jcs5030087 CR - Liu, M., Wang, Y., 2023. Bamboo fiber-reinforced polypropylene composites: Enhancing tensile strength and environmental performance. Polymers, 15(4), 789. https://doi.org/10.3390/polym15040789 CR - Martínez, C.M., Cantero, D.A., Cocero, M.J., 2018. Production of saccharides from sugar beet pulp by ultrafast hydrolysis in supercritical water. Journal of Cleaner Production, 204, 888–895. https://doi.org/10.1016/j.jclepro.2018.09.066 CR - Ngaowthong, C., Borůvka, M., Běhálek, L., Lenfel, P., Švec, M., Dangtungee, R., Siengchin, S., Rangappa, S.M., Parameswaranpillai, J., 2019. Recycling of sisal fiber reinforced polypropylene and polylactic acid composites: Thermo-mechanical properties, morphology, and water absorption behavior. Waste Management, 97, 71–81. https://doi.org/10.1016/j.wasman.2019.07.038 CR - Oliver-Ortega, H., Julian, F., Espinach, F.X., Tarrés, Q., Ardanuy, M., Mutjé, P., 2019. Research on the use of lignocellulosic fibers reinforced bio-polyamide 11 with composites for automotive parts: Car door handle case study. Journal of Cleaner Production, 226, 64–73. https://doi.org/10.1016/j.jclepro.2019.04.047 CR - Öztürk, N.K., Sever, K., Sütçü, M., Seki, Y., 2015. Tarımsal Atık İle Katkı-lanmış Yüksek Yoğunluklu Polietilen Kompozitlerin Fiziksel, Mekanik Ve Termal Özelliklerinin Belirlenmesi. CR - Patel, R.V., Yadav, A., Winczek, J., 2023. Physical, Mechanical, and Thermal Properties of Natural Fiber-Reinforced Epoxy Composites for Construction and Automotive Applications. Applied Sciences, 13, 5126. https://doi.org/10.3390/app13085126 CR - Patel, S.K., Kumar, A., Singh, P., 2021. Influence of sugarcane bagasse fiber on the performance of polypropylene-based composites. Journal of Renewable Materials, 9(7), 1313–1325. CR - Patel, S.K., Kumar, A., Singh, P., 2021. Reinforcement of polypropylene composites with sugarcane bagasse: Mechanical and thermal profiling. Journal of Polymer Research, 28(5), 310. https://doi.org/10.1007/s10965-021-02712-3 CR - Pattanaik, L., Pattnaik, F., Saxena, D.K., Naik, S.N., 2019. Biofuels from agricultural wastes, in: Second and Third Generation of Feedstocks: The Evolution of Biofuels. Elsevier, pp. 103–142. https://doi.org/10.1016/B978-0-12-815162-4.00005-7 CR - Rajak, D.K., Pagar, D.D., Menezes, P.L., Linul, E., 2019. Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers, 11(10), 1667. https://doi.org/10.3390/polym11101667 CR - Ramos, V., Costa, L., Silva, E., 2022. Corn stover-filled polypropylene composites: Structure property relationships and biodegradation behavior. Materials Today Communications, 30, 103199. https://doi.org/10.1016/j.mtcomm.2021.103199 CR - Ruangudomsakul, W., Ruksakulpiwat, C., Ruksakulpiwat, Y., 2015. Preparation and characterization of cellulose nanofibers from cassava pulp. Macromolecular Symposia, 354, 170–176. https://doi.org/10.1002/masy.201400096 CR - Salazar-Cruz, B.A., Chávez-Cinco, M.Y., Morales-Cepeda, A.B., Ramos-Galván, C.E., Rivera-Armenta, J.L., 2022. Evaluation of Thermal Properties of Composites Prepared from Pistachio Shell Particles Treated Chemically and Polypropylene. Molecules, 27, 426. https://doi.org/10.3390/molecules27020426 CR - Selvakumar, V., Manoharan, N., 2014. Thermal properties of polypropylene/montmorillonite nanocomposites. Indian Journal of Science and Technology, 7, 136–139. CR - Sever, K., Atagür, M., Tunçalp, M., Altay, L., Seki, Y., Sarıkanat, M., 2019. The effect of pumice powder on mechanical and thermal properties of polypropylene. Journal of Thermoplastic Composite Materials, 32, 1092–1106. https://doi.org/10.1177/0892705718785692 CR - Sever, K., Aycan, Y., 2019. The effects of agro-waste reinforcing fillers as single and hybrid on mechanical and thermal properties of polypropylene. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 21, 395–408. CR - Sever, K., Tavman, I.H., Seki, Y., Turgut, A., Omastova, M., Ozdemir, I., 2013. Electrical and mechanical properties of expanded graphite/high density polyethylene nanocomposites. Composites Part B: Engineering, 53, 226–233. https://doi.org/10.1016/j.compositesb.2013.04.069 CR - Sever, K., Yılmaz, M., 2020. Influence of wollastonite hybridization on the properties of artichoke-filled polypropylene composites. Emerging Materials Research, 9, 302–307. https://doi.org/10.1680/jemmr.18.00121 CR - Shumigin, D., Tarasova, E., Krumme, A., Meier, P., 2011. Rheological and Mechanical Properties of Poly (lactic) Acid / Cellulose and LDPE / Cellulose Composites. CR - Sidi-Yacoub, B., Oudghiri, F., Belkadi, M., Rodríguez-Barroso, R., 2019. Characterization of lignocellulosic components in exhausted sugar beet pulp waste by TG/FTIR analysis. Journal of Thermal Analysis and Calorimetry, 138, 1801–1809. https://doi.org/10.1007/s10973-019-08179-8 CR - Singh, A.K., Bedi, R., Khajuria, A., 2024. A review of composite materials based on rice straw and future trends for sustainable composites. Journal of Cleaner Production, 457, 142417. https://doi.org/10.1016/j.jclepro.2024.142417 CR - Şen, İ., Tuna, S., Akkoyun Kurtlu, M., 2024. Evaluation of the use and performance of natural filler based polypropylene/leonardite composites. Journal of Cleaner Production, 480, 144105. https://doi.org/10.1016/j.jclepro.2024.144105 CR - Tang, X., Yan, X., 2020. A review on the damping properties of fiber reinforced polymer composites. Journal of Industrial Textiles, 49(6), 693–721. https://doi.org/10.1177/1528083718795912 CR - Tosun, F., 2017. ŞEKER PANCARI, Tepge Yayın: Ankara. CR - Tuna, S., Akkoyun Kurtlu, M., 2024. Effect of coupling agent on polylactic acid/polypropylene and polylactic acid/polyamide 6 foam composites. Journal of Applied Polymer Science, 141, e54849. https://doi.org/10.1002/app.54849 CR - Vigneshwaran, S., Sundarakannan, R., John, K.M., Joel Johnson, R.D., Prasath, K.A., Ajith, S., Arumugaprabu, V., Uthayakumar, M., 2020. Recent advancement in the natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 277, 124109. https://doi.org/10.1016/j.jclepro.2020.124109 CR - Yao, Z., Xia, M., Ge, L., Chen, T., Li, H., Ye, Y., Zheng, H., 2014. Mechanical and thermal properties of polypropylene (PP) composites filled with CaCO3 and shell waste derived bio-fillers. Fibers and Polymers, 15, 1278–1287. https://doi.org/10.1007/s12221-014-1278-5 CR - Yussuf, A.A., El-Fattah, A.I.A., Daramola, M.O., 2022. Development of polypropylene composites reinforced with wheat straw: Mechanical, thermal, and environmental performance. Heliyon, 8(3), e09128. https://doi.org/10.1016/j.heliyon.2022.e09128 CR - Zhang, H., Wang, R., Liu, Z., 2023. Rice husk-filled polypropylene composites: Evaluation of processing, structure, and properties. Materials Today Sustainability, 21, 100332. https://doi.org/10.1016/j.mtsust.2023.100332 UR - https://dergipark.org.tr/en/pub/jesd/issue//1646574 L1 - https://dergipark.org.tr/en/download/article-file/4639632 ER -