TY - JOUR T1 - Enzymatic hydrolysis of anthocyanin glycosides by Bifidobacterium infantis cell-free enzymes: Stability assessment and bioavailability implications AU - Basholli Salihu, Mimoza AU - Shala, Aida AU - Haloci, Entela AU - Kryeziu, Toskë AU - Haliti, Arsim AU - Viernstein, Helmut AU - Mueller, Monika PY - 2025 DA - April Y2 - 2025 DO - 10.12991/jrespharm.1647462 JF - Journal of Research in Pharmacy JO - J. Res. Pharm. PB - Marmara University WT - DergiPark SN - 2630-6344 SP - 486 EP - 496 VL - 29 IS - 2 LA - en AB - The bioavailability of anthocyanins is crucial for conveying their health benefits, but they are poorly absorbed in the gastrointestinal tract (GIT). The deglycosylation of anthocyanins is the key step in improving their bioavailability and bioactivity. This study investigated the potential of β-glucosidase and β-galactosidase cell-free enzymes from Bifidobacterium infantis, on glycolytic hydrolysis of essential anthocyanins, including Cyanidin-3-O-β-D-glucoside (C3-Glu), Malvidin-3- O-β-D-glucoside (M3-Glu), Cyanidin-3-O-β-D-galactoside (C3-Gal) and Delphinidin-3-O-β-D-glucoside (D3-Glu). According to our previous work, Bifidobacterium infantis (B. infantis) was chosen for this study due to its high β- glucosidase and β-galactosidase activity. The anthocyanin glycosides' stability was also evaluated to distinguish chemical instability from enzymatic degradation. B. infantis β-glucosidase exerted the highest activity toward C3-Glu, forming high levels of protocatechuic acid as an active compound, with lower hydrolytic rates observed for M3-Glu. Additionally, B. infantis's β-galactosidase activity was efficient against C3-Gal. According to this study, B. infantis prefers cyanidin glucoside and cyanidin galactoside as substrates. Under experimental circumstances, delphinidin exhibited lower chemical stability, but malvidin and cyanidin glycosides exhibited similar stability. In conclusion, chemical instability is the cause of delphinidin's rate of degradation. According to these results, B. infantis may be utilized as a probiotic supplement to improve the health advantages and bioavailability of meals high in anthocyanins, supporting the development of functional foods and medicinal formulations. KW - Anthocyanins KW - Bioavailability KW - Deglycosilation KW - Bifidobacterium infantis KW - β-Glucosidase KW - β-Galactosidase KW - Enzymatic hydrolysis KW - Cell-free Enzyme Stability CR - [1] Garcia-Alonso M, Minihane AM, Rimbach G, Rivas-Gonzalo JC, de Pascual-Teresa S. Red wine anthocyanins are rapidly absorbed in humans and affect monocyte chemoattractant protein 1 levels and antioxidant capacity of plasma. J Nutr Biochem. 2009; 20(7): 521-529. https://doi.org/10.1016/j.jnutbio.2008.05.011 CR - [2] de Pascual-Teresa S. Molecular mechanisms involved in the cardiovascular and neuroprotective effects of anthocyanins. Arch Biochem Biophys. 2014; 559(1) :68-74. https://doi.org/10.1016/j.abb.2014.04.012 CR - [3] Afkir S, Markaoui M, Aziz M, Bnouham M, Mekhfi H, Legssyer A, Ziyyat A. Effect of flavonoïds from Arbutus unedo leaves on rat isolated thoracic aorta. Arab J Med Aromat Plants. 2015; 1(2): 75-93. https://doi.org/10.48347/IMIST.PRSM/ajmap-v1i2.4324 CR - [4] Ayvaz H, Cabaroglu T, Akyildiz A, Pala CU, Temizkan R, Ağçam E, Ayvaz Z, Durazzo A, Lucarini M, Direito R, Diaconeasa Z. Anthocyanins: Metabolic digestion, bioavailability, therapeutic effects, current pharmaceutical/ındustrial use, and ınnovation potential. Antioxidants. 2022; 12(1): 48. https://doi:10.3390/antiox12010048 CR - [5] Salehi B, Sharifi-Rad J, Cappellini F, Reiner Ž, Zorzan D, Imran M, Sener B, Kilic M, El-Shazly M, Fahmy NM, Al-Sayed E. The therapeutic potential of anthocyanins: current approaches based on their molecular mechanism of action. Front Pharmacol. 2020; 11(1): 1300. https://doi:10.3389/fphar.2020.01300 CR - [6] Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Todorovic B, Veberic R, Stampar F, Ivancic A. Investigation of anthocyanin profile of four elderberry species and ınterspecific hybrids. J Agric Food Chem. 2014; 62(24): 5573-5580. https://doi:10.1021/jf501194 CR - [7] Nohara C, Yokoyama D, Tanaka W, Sogon T, Sakono M, Sakakibara H. Daily consumption of bilberry (Vaccinium myrtillus L.) extracts increases the absorption rate of anthocyanins in rats. J Agric Food Chem. 2018; 66(30): 7958-7964. https://doi:10.1021/acs.jafc.8b02404 CR - [8] Smeriglio A, Barreca D, Bellocco E, Trombetta D. Chemistry, pharmacology and health benefits of anthocyanins. Phytother Res. 2016; 30(8): 1265-1286. https://doi:10.1002/ptr.5642 CR - [9] Fernandes I, Faria A, Calhau C, de Freitas V, Mateus N. Bioavailability of anthocyanins and derivatives. J Funct Foods. 2014; 7(1): 54-66. https://doi.org/10.1016/j.jff.2013.05.010 CR - [10] Diaconeasa Z, Leopold L, Rugină D, Ayvaz H, Socaciu C. Antiproliferative and antioxidant properties of anthocyanin rich extracts from blueberry and blackcurrant juice. Int J Mol Sci. 2015; 16(2): 2352-2365. https://doi:10.3390/ijms16022352 CR - [11] Lee HC, Jenner AM, Low CS, Lee YK. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol. 2006; 157(9): 876-884. https://doi.org/10.1016/j.resmic.2006.07.004 CR - [12] Aura AM, Martin-Lopez P, O’Leary KA, Williamson G, Oksman-Caldentey KM, Poutanen K, Santos-Buelga C. In vitro metabolism of anthocyanins by human gut microflora. Eur J Nutr. 2005; 44(3) :133-142. https://doi:10.1007/s00394-004-0502-2 CR - [13] Ahn HJ, You HJ, Park MS, Li Z, Choe D, Johnston TV, Ku S, Ji GE. Microbial biocatalysis of quercetin-3- glucoside and isorhamnetin-3-glucoside in Salicornia herbacea and their contribution to improved anti- inflammatory activity. RSC Adv. 2020;10(9):5339–5350. https://doi.org/10.1039/C9RA08059G CR - [14] Wang Y, Wang C, Shi J, Zhang Y. Effects of derivatization and probiotic transformation on the antioxidative activity of fruit polyphenols. Food Chem X. 2024;101776. https://doi.org/10.1016/j.fochx.2024.101776. CR - [15] Otieno DO, Ashton JF, Shah NP. Evaluation of enzymic potential for biotransformation of isoflavone phytoestrogen in soymilk by Bifidobacterium animalis, Lactobacillus acidophilus and Lactobacillus casei. Food Res Int. 2006; 39(4): 394-407. https://doi.org/10.1016/j.foodres.2005.08.010 CR - [16] Di Gioia D, Strahsburger E, de Lacey AM, Bregola V, Marotti I, Aloisio I, Biavati B, Dinelli G. Flavonoid bioconversion in Bifidobacterium pseudocatenulatum B7003: A potential probiotic strain for functional food development. J Funct Foods. 2014; 7(1): 671-679. https://doi.org/10.1016/j.jff.2013.12.018 CR - [17] Ávila M, Hidalgo M, Sánchez-Moreno C, Pelaez C, Requena T, de Pascual-Teresa S. Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Res Int. 2009; 42(10): 1453-1461. https://doi.org/10.1016/j.foodres.2009.07.026 CR - [18] Lila MA, Burton-Freeman B, Grace M, Kalt W. Unraveling anthocyanin bioavailability for human health. Annu Rev Food Sci Technol. 2016; 7(1): 375-393. https://doi:10.1146/annurev-food-041715-033346 CR - [19] González-Gallego J, García-Mediavilla MV, Sánchez-Campos S, Tuñón MJ. Anti-inflammatory, immunomodulatory, and prebiotic properties of dietary flavonoids. In: Watson RR, Preedy VR and Zibadi S. (Eds). Polyphenols: Prevention and treatment of human disease. Academic Press, United Kingdom, 2018, pp. 327-345. https://doi.org/10.1016/B978-0-12-813008-7.00028-X CR - [20] Alqudah S, Claesen J. Mechanisms of gut bacterial metabolism of dietary polyphenols into bioactive compounds. Gut Microbes. 2024;16(1):2426614. https://doi: 10.1080/19490976.2024.2426614 CR - [21] Shen T, Han XZ, Wang XN, Fan PH, Ren DM, Lou HX. Protective Effects of Dietary Polyphenols in Human Diseases and Mechanisms of Action. In: Al-Gubory KH, Laher I. (Eds). Nutritional Antioxidant Therapies: Treatments and Perspectives. Springer International Publishing, Switzerland, 2017, pp. 307-345. https://doi:10.1007/978-3-319-67625-8_13 CR - [22] Tanaka T. Colorectal carcinogenesis: Review of human and experimental animal studies. J Carcinog. 2009; 8(1): 5. https://doi.org/10.4103/1477-3163.49014 CR - [23] Ma G, Chen Y. Polyphenol supplementation benefits human health via gut microbiota: A systematic review via meta-analysis. J Funct Foods. 2020; 66(1): 103829. https://doi:10.1016/j.jff.2020.103829 CR - [24] Kim KN, Yao Y, Ju SY. Short chain fatty acids and fecal microbiota abundance in humans with obesity: A systematic review and meta-analysis. Nutrients. 2019; 11(10): 2512. https://doi:10.3390/nu11102512 CR - [25] Tian B, Zhao J, Zhang M, Chen Z, Ma Q, Liu H, Nie C, Zhang Z, An W, Li J. Lycium ruthenicum anthocyanins attenuate high-fat diet-induced colonic barrier dysfunction and inflammation in mice by modulating the gut microbiota. Mol Nutr Food Res. 2021; 65(8): 2000745. https://doi:10.1002/mnfr.202000745 CR - [26] Peng Y, Yan Y, Wan P, Chen D, Ding Y, Ran L, Mi J, Lu L, Zhang Z, Li X, Zeng X, Cao Y. Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice. Free Radic Biol Med. 2019;136:96-108. https://doi.org/10.1016/j.freeradbiomed.2019.04.005. CR - [27] Chen K, Kortesniemi MK, Linderborg KM, Yang B. Anthocyanins as promising molecules affecting energy homeostasis, inflammation, and gut microbiota in Type 2 Diabetes with special reference to impact of acylation. J Agric Food Chem. 2023; 71(2): 1002-1017. https://doi:10.1021/acs.jafc.2c05879 CR - [28] Hütt P, Shchepetova J, Loivukene K, Kullisaar T, Mikelsaar M. Antagonistic activity of probiotic Lactobacilli and Bifidobacteria against entero-and uropathogens. J Appl Microbiol. 2006; 100(6): 1324-1332. CR - [29] de Vrese M, Stegelmann A, Richter B, Fenselau S, Laue C, Schrezenmeir J. Probiotics—compensation for lactase insufficiency. Am J Clin Nutr. 2001; 73(2): 421s-429s. https://doi.org/10.1093/ajcn/73.2.421s CR - [30] Basholli-Salihu M, Schuster R, Mulla D, Praznik W, Viernstein H, Mueller M. Bioconversion of piceid to resveratrol by selected probiotic cell extracts. Bioprocess Biosyst Eng. 2016; 39(12): 1879-1885. https://doi:10.1007/s00449-016-1662-1 CR - [31] Fleschhut J, Kratzer F, Rechkemmer G, Kulling SE. Stability and biotransformation of various dietary anthocyanins in vitro. Eur J Nutr. 2006; 45(1): 7-18. https://doi:10.1007/s00394-005-0557-8 CR - [32] Keppler K, Humpf HU. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorg Med Chem. 2005; 13(17): 5195-5205. https://doi.org/10.1016/j.bmc.2005.05.003 CR - [33] Braune A, Blaut M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes. 2016; 7(3): 216-234. https://doi:10.1080/19490976.2016.1158395 CR - [34] Kapoor P, Tiwari A, Sharma S, Tiwari V, Sheoran B, Ali U, Garg M. Effect of anthocyanins on gut health markers, Firmicutes-Bacteroidetes ratio and short-chain fatty acids: A systematic review via meta-analysis. Sci Rep. 2023; 13(1): 1729. https://doi:10.1038/s41598-023-28764-0 CR - [35] Gonçalves AC, Nunes AR, Falcão A, Alves G, Silva LR. Dietary effects of anthocyanins in human health: A comprehensive review. Pharmaceuticals. 2021; 14(7): 690. https://doi:10.3390/ph14070690 CR - [36] Jamar G, Estadella D, Pisani LP. Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. BioFactors. 2017; 43(4): 507-516. https://doi:10.1002/biof.1365 CR - [37] Wu T, Yang L, Guo X, Zhang M, Liu R, Sui W. Raspberry anthocyanin consumption prevents diet-induced obesity by alleviating oxidative stress and modulating hepatic lipid metabolism. Food Funct. 2018; 9(4): 2112- 2120. https://doi:10.1039/C7FO02061A CR - [38] Chen Q, Ren Y, Lu J, Bartlett M, Chen L, Zhang Y, Guo X, Liu C. A novel prebiotic blend product prevents irritable bowel syndrome in mice by improving gut microbiota and modulating immune response. Nutrients. 2017; 9(12): 1341. https://doi:10.3390/nu9121341 UR - https://doi.org/10.12991/jrespharm.1647462 L1 - https://dergipark.org.tr/en/download/article-file/4643725 ER -