TY - JOUR T1 - Rogowski Coils with Nickel Alloy Flexible Core and Peroformance Comparisons TT - Nikel Alaşımlı Esnek Nüveye Sahip Rogowski Bobinler ve Performans Karşılaştırmaları AU - Yıldırız, Emin AU - Aydin, Gizem Merve PY - 2025 DA - October Y2 - 2025 DO - 10.29130/dubited.1650136 JF - Duzce University Journal of Science and Technology JO - DÜBİTED PB - Duzce University WT - DergiPark SN - 2148-2446 SP - 1601 EP - 1611 VL - 13 IS - 4 LA - en AB - The instantaneous currents must be measured precisely and accurately in order to monitor electrical circuits under different operating conditions. Rogowski Coils (RC) can be easily connected even in narrow spaces where the measuring device cannot enter. They perform current measurement using the secondary voltages produced at a few mV levels even at the nominal currents (3000 - 60000 A). Therefore, it is difficult to make measurements with RCs, especially at low current values such as a few ten amperes, and the results are prone to the measurement errors. In order to increase the measurement sensitivity without changing the physical dimensions of the RC, a magnetic-core structure can be preferred instead of an air-core. In this paper, the magnetic filaments have been produced using nickel alloys at different ratios (40% and 60%). Flexible magnetic-core RCs have been developed by winding the magnetic filaments. Considering the flexibility of the core, the magnetic filaments have been produced in two different alloy ratios. The relative permeabilities of the developed magnetic filaments have been determined by experimental studies and their linear characteristics in the range of 5-400 A have been verified by finite element analysis. KW - Rogowski Coil KW - Flexible Magnetic Core KW - Current Measurement N2 - Elektriksel devrelerin farklı çalışma koşullarında takibi için anlık akımların hassas ve doğru şekilde ölçülmesi gerekir. Geleneksel Rogowski Bobinleri (RB) hava nüveli olduklarından, akım transformatörleri gibi doyum problemleri yaşamazlar. Esnek oldukları için ölçü aletinin giremediği dar alanlarda dahi kolayca bağlanabilirler ve ölçüm yapabilirler. Bu üstünlüklerine karşın nominal akım değerlerinde dahi birkaç mV seviyesinde üretilen sekonder gerilimleri kullanılarak akım ölçümü gerçekleştirirler. Bu nedenle özellikle düşük akım değerlerinde RB ile ölçüm yapmak zordur ve sonuçlar ölçüm hatalarına açıktır. Düşük genlikte ve frekansta akım ölçümlerinde, uygun RB tasarımı ve indikatör seçimi kritiktir. RB tasarımında; iç kesit alanının büyüklüğü ve şekli ile iç ve dış çap gibi fiziksel boyutlar dikkate alınır. Ancak kullanım yerleri fiziksel boyutları da kısıtlayabilir. Fiziksel boyutlarını değiştirmeden RB’in ölçüm etkinliğini arttırmak için, hava-nüveli yapıdan manyetik nüveli yapıya geçiş yapılmalıdır. Bu çalışmada farklı oranlarda Nikel alaşımlar kullanılarak manyetik filamentler üretilmiştir. Manyetik filamentlerin sarılması ile esnek manyetik nüveli RB’ler geliştirilmiştir. Nüvenin esnekliği de dikkate alınarak, iki farklı alaşımlı manyetik filament üretilmiştir. Geliştirilen manyetik filamentlerin bağıl geçirgenlikleri, deneysel çalışmalarla belirlenmiş ve sonlu elemanlar analizi ile 5-400 A aralığında lineer karakteristikleri doğrulanmıştır. CR - Accuenergy. (2025, February 25). AcuCT Flex Series Rogowski Coil CT datasheet. https://accucdn.accuenergy.com/wp-content/uploads/acuct-flex-series-rogowski-coil-ct-datasheet.pdf CR - Al-Sowayan, S. (2014). Improved mutual inductance of Rogowski coil using hexagonal core. World Academy of Science, Engineering and Technology International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 8(2), 293-296. CR - Anigi, E., Karacasu, Ö., & Hocaoğlu, M. H. (2012, November 29 – December 1). Ölçü akım transformatörlerinin doğruluğunun sinüzoidal olmayan şartlar altında deneysel incelenmesi, In Proceedings of ELECO 2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu (pp. 148-152). Bursa Türkiye. CR - Bawankule, P., & Chandrasekaran, K. (2022, October 7-9). Rogowski coil with an active integrator for impulse current measurement. In Proceedings of the 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT) (pp. 1–6). Bangalore, India. CR - Bawankule, P., & Chandrasekaran, K. (2025, January 20-22). Analyzing the Performance of 3D PCB Rogowski Coil in Pulsed Current Measurement Using Finite Element Method. In Proceedings of the 2025 Fourth International Conference on Power, Control and Computing Technologies (ICPC2T) (pp. 1–6). Raipur, India, https://doi.org/10.1109/ICPC2T63847.2025.10958704 CR - Chen, K. L., & Chen, N. (2010). A new method for power current measurement using a coreless Hall effect current transformer. IEEE Transactions on Instrumentation and Measurement, 60(1), 158-169. https://doi.org/10.1109/TIM.2010.2049234 CR - Crescentini, M., Syeda, S. F., & Gibiino, G. P. (2021). Hall-effect current sensors: Principles of operation and implementation techniques. IEEE Sensors Journal, 22(11), 10137-10151. https://doi.org/10.1109/JSEN.2021.3119766 Çınar, H., İmal, N., & Şener, E. (2016). Akım ölçü transformatörleri çalışma bölgesi analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 4(2), 782-790. CR - Dubickas, V., & Edin, H. (2007). High-frequency model of the Rogowski coil with a small number of turns. IEEE Transactions on Instrumentation and Measurement, 56(6), 2284-2288. https://doi.org/10.1109/TIM.2007.907965 CR - Han, R. Y., Wu, J. W., Ding, W. D., Jing, Y., Zhou, H. B., Liu, Q. J., & Qiu, A. C. (2015). Hybrid PCB Rogowski coil for measurement of nanosecond-risetime pulsed current. IEEE Transactions on Plasma Science, 43(10), 3555-3561. https://doi.org/10.1109/TPS.2015.2415517 CR - Hlavacek, J., Prochazka, R., Draxler, K., & Kvasnicka, V. (2008, September 22-24). The Rogowski coil design software. In Proceedings of the16th IMEKO TC4 International Symposium. Florence, Italy. CR - Kang, J., Zhu, A., Chen, Y., Luo, H., Yao, L., & Xin, Z. (2023). An online gate oxide degradation monitoring method for SiC MOSFETs with contactless PCB Rogowski coil approach. IEEE Transactions on Power Electronics, 38(8), 9673-9684. https://doi.org/10.1109/TPEL.2023.3270820 CR - Liu, Y., Lin, F., Zhang, Q., & Zhong, H. (2010). Design and construction of a Rogowski coil for measuring wide pulsed current. IEEE Sensors Journal, 11(1), 123-130. https://doi.org/10.1109/JSEN.2010.2052034 CR - Marracci, M., Tellini, B., & Bertolucci, E. (2017, May). Study and characterization of a Rogowski coil with superparamagnetic magnetite core. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, https://doi.org/10.1109/I2MTC.2017.7969951 CR - Nanyan, A. N., Isa, M., Hamid, H. A., Rohani, M. N. K., & Ismail, B. (2018). The Rogowski coil sensor in high current application: A review. IOP Conference Series: Materials Science and Engineering, 318(1), Article 012054. https://doi.org/10.1088/1757-899X/318/1/012054 CR - Pozo, B., Garate, J. I., Araujo, J. Á., & Ferreiro, S. (2019). Energy harvesting technologies and equivalent electronic structural models. Electronics, 8(5), Article 486. https://doi.org/10.3390/electronics8050486 CR - Prince, T. J., Riley, E. J., & Miller, S. W. (2021). Additive manufacturing of PLA-based microwave circuit-analog absorbers. IEEE Transactions on Electromagnetic Compatibility, 63(5), 1341-1346. https://doi.org/10.1109/TEMC.2020.3044014 CR - Ranasingh, S., Pradhan, T., & Raju, D. K. (2022). Contactless current sensor with novel coil designs and Hall-effect based electron device for dynamic precision adjustment. IEEE Sensors Journal, 22(21), 20626-20634. https://doi.org/10.1109/JSEN.2022.3207276 CR - Samimi, M. H., Mahari, A., Farahnakian, M. A., & Mohseni, H. (2014). The Rogowski coil principles and applications: A review. IEEE Sensors Journal, 15(2), 651-658. https://doi.org/10.1109/JSEN.2014.2362940 CR - Shafiq, M., Stewart, B. G., Hussain, G. A., Hassan, W., Choudhary, M., & Palo, I. (2022). Design and applications of Rogowski coil sensors for power system measurements: A review. Measurement, 203, Article 112014. https://doi.org/10.1016/j.measurement.2022.112014 CR - Shang, Y., Li, H., Wang, J., Wu, J., & He, X. (2012, May 28-31). Analysis and design of a current transformer fed power supply from high AC voltage cable. In 2012 IEEE International Symposium on Industrial Electronics, Hangzhou, China, https://doi.org/10.1109/ISIE.2012.6237080 CR - Shepard, D. E., & Yauch, D. W. (2000). An overview of Rogowski coil current sensing technology (Technical report). LEM High Current Systems. CR - Shi, Y., Xin, Z., Loh, P. C., & Blaabjerg, F. (2020). A review of traditional helical to recent miniaturized printed circuit board Rogowski coils for power-electronic applications. IEEE Transactions on Power Electronics, 35(11), 12207-12222. https://doi.org/10.1109/TPEL.2020.2984055 CR - Takahashi, S., Ogasawara, S., Takemoto, M., Orikawa, K., & Tamate, M. (2019, November 25-28). Experimental evaluation of the relationship between filter inductor impedances and dimensional resonances of MnZn ferrites. In Proceedings of the 2019 IEEE 4th International Future Energy Electronics Conference (IFEEC), Singapore, https://doi.org/10.1109/IFEEC47410.2019.9015169. CR - Timsit, R. S. (2008). High speed electronic connector design: A review of electrical and electromagnetic properties of passive contact elements—part 1. IEICE transactions on electronics, 91(8), 1178-1191. https://doi.org/10.1093/ietele/e91-c.8.1178 CR - Wang, J., Wang, H., Mao, M., & Ma, X. (2024). Analysis and optimization of the stray capacitance of Rogowski coils. Applied Sciences, 14(17), Article 7748. https://doi.org/10.3390/app14177748 CR - Wei, C., Lin, C., Boyang, M., Yuntao, G., & Shi, Y. (2020, October 18-21). Development of magnetic core framework for flexible Rogowski coil current transducer. In Proceedings of IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, https://doi.org/10.1109/IECON43393.2020.9254471 CR - Xin, Z., Yao, Y., Kang, J., Li, Q., Zhou, Z., & Shi, Y. (2025). A closed-loop compensated Rogowski coil current sensor for three-phase inverter. IEEE Transactions on Power Electronics. 40(1), 2126-2138. https://doi.org/10.1109/TPEL.2024.3464121 CR - Yu, H., Yuan, J., & Zou, J. (2006). Design of novel structure current transformer with shielding coils for overcoming the saturation of core. IEEE Transactions on Magnetics, 42(4), 1431-1434. https://doi.org/10.1109/TMAG.2006.872478 CR - Zárybnická, L., Pagáč, M., Ševčík, R., Pokorný, J., & Marek, M. (2023). Effect of topology parameters on physical–mechanical properties of magnetic PLA 3D-printed structures. Magnetochemistry, 9(12), Article 232. https://doi.org/10.3390/magnetochemistry9120232 CR - Zhan, Y., Feng, G., Wan, J., Li, X., Jin, R., Sun, P., Zhao, Z. & Cui, X. (2024). PCB Rogowski coil array with discrete electrostatic shielding for current measurement of paralleled chips in power devices. IEEE Transactions on Power Electronics, 39(8), 10276-10286. https://doi.org/10.1109/TPEL.2024.3392937 CR - Zhang, W., Sohid, S. B., Wang, F., Cui, H., & Holzinger, B. (2021). High-bandwidth combinational Rogowski coil for SiC MOSFET power module. IEEE Transactions on power electronics, 37(4), 4397-4405. https://doi.org/10.1109/TPEL.2021.3127545 UR - https://doi.org/10.29130/dubited.1650136 L1 - https://dergipark.org.tr/en/download/article-file/4655668 ER -