TY - JOUR T1 - Optimization of Tensile Properties in 3D-Printed PETG Honeycomb Structures via Taguchi Method: Influence of Cell Size and Geometric Orientation AU - Yılmaz, Ahmet Fatih PY - 2025 DA - April Y2 - 2025 JF - Gazi Journal of Engineering Sciences JO - GJES PB - Parantez Teknoloji WT - DergiPark SN - 2149-9373 SP - 167 EP - 178 VL - 11 IS - 1 LA - en AB - Honeycomb structures are extensively used in engineering applications due to their high strength-to-weight ratio, energy absorption capacity, and customizable mechanical behavior. However, optimizing their tensile performance remains a significant challenge. This study systematically investigates the effects of cell size (1.75 mm, 1.5 mm, 1.25 mm) and geometric orientation (0º, 15º, 30º) on the tensile behavior of 3D-printed polyethylene terephthalate glycol-modified (PETG) honeycomb structures, fabricated using Fused Deposition Modeling (FDM). Nine different specimens were manufactured and tested following the ASTM D638 standard. The optimal configuration was determined using Taguchi’s signal-to-noise (S/N) ratio analysis, while Analysis of Variance (ANOVA) was conducted for statistical evaluation. The results indicate that a cell size of 1.25 mm and a 30º orientation provided the highest fracture force (277.03 N), while the 1.75 mm cell size at 30º exhibited the greatest energy absorption (335.59 × 10⁻³ J). ANOVA confirmed that cell size significantly influenced tensile strength, whereas geometric orientation had a greater impact on energy absorption. This study contributes to optimizing 3D printing parameters for enhanced mechanical performance and provides insights for designing lightweight, high-strength structures in aerospace and structural applications. Future research may include computational simulations to further validate these findings. KW - Honeycomb structures KW - FDM KW - Taguchi optimization KW - PETG CR - [1] X. Zhou, L. Ren, Z. Song, and others, “Advances in 3D/4D printing of mechanical metamaterials: From manufacturing to applications,” Composites Part B, vol. 254, p. 110585, 2023. doi: 10.1016/j.compositesb.2023.110585 CR - [2] J. Fan et al., “A review of additive manufacturing of metamaterials and developing trends,” Materials Today, vol. 50, pp. 303–328, 2021. doi: 10.1016/j.mattod.2021.04.019 CR - [3] Y. Garbatov, S. S. Marchese, G. Epasto, and V. Crupi, “Flexural response of additive-manufactured honeycomb sandwiches for marine structural applications,” Ocean Engineering, vol. 302, p. 117732, 2024. doi: 10.1016/j.oceaneng.2024.117732 CR - [4] J. Zhang, G. Lu, and Z. You, “Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review,” Compos B Eng, vol. 201, p. 108340, 2020. doi: 10.1016/j.compositesb.2020.108340 CR - [5] C. Qi, F. Jiang, and S. Yang, “Advanced honeycomb designs for mechanical properties: A review,” Composites Part B, vol. 227, p. 109393, 2021. https://doi.org/10.1016/j.compositesb.2021.109393. doi: 10.1016/j.compositesb.2021.109393 CR - [6] G. Palomba, G. Epasto, L. Sutherland, and V. Crupi, “Aluminium honeycomb sandwich as a design alternative for lightweight marine structures,” Ships and Offshore Structures, vol. 17, pp. 2355–2366, 2022. doi: 10.1080/17445302.2021.1996109 CR - [7] S. L. Omairey, P. D. Dunning, and S. Sriramula, “Development of an ABAQUS plugin tool for periodic RVE homogenisation,” Eng Comput (Swansea), vol. 35, pp. 567–577, 2019. doi: 10.1007/s00366-018-0616-4 CR - [8] F. Pehlivan, F. H. Öztürk, S. Demir, and A. Temiz, “Optimization of functionally graded solid-network TPMS meta-biomaterials,” J Mech Behav Biomed Mater, vol. 157, p. 106609, 2024. doi: 10.1016/j.jmbbm.2024.106609 CR - [9] G. Sun, X. Huo, H. Wang, and others, “On the structural parameters of honeycomb-core sandwich panels against low-velocity impact,” Composites Part B, vol. 216, p. 108881, 2021. doi: 10.1016/j.compositesb.2021.108881 CR - [10] Z. Huang, X. Zhang, and C. Yang, “Experimental and numerical studies on the bending collapse of multi-cell Aluminum/CFRP hybrid tubes,” Composites Part B, vol. 181, p. 107527, 2020. doi: 10.1016/j.compositesb.2019.107527 CR - [11] A. Singh, B. Koohbor, and G. Youssef, “Full-field characterizations of additively manufactured composite cellular structures,” Composites Part B, vol. 272, p. 111208, 2024. doi: 10.1016/j.compositesb.2024.111208 CR - [12] X. Zheng, T. Chen, X. Jiang, and others, “Deep-learning-based inverse design of three-dimensional architected cellular materials with the target porosity and stiffness using voxelized Voronoi lattices,” Sci Technol Adv Mater, vol. 24, p. 2157682, 2023. doi: 10.1080/14686996.2022.2157682 CR - [13] P. Nampally, A. T. Karttunen, and J. N. Reddy, “Nonlinear finite element analysis of lattice core sandwich plates,” Int J NonLinear Mech, vol. 121, p. 103423, 2020. doi: 10.1016/j.ijnonlinmec.2020.103423 CR - [14] H. Yang, Z. Liu, Y. Xia, and others, “Mechanical properties of hierarchical lattice via strain gradient homogenization approach,” Composites Part B, vol. 271, p. 111153, 2024. doi: 10.1016/j.compositesb.2023.111153 CR - [15] L. Mizzi, D. Attard, R. Gatt, and others, “Implementation of periodic boundary conditions for loading of mechanical metamaterials using finite element analysis,” Eng Comput (Swansea), vol. 37, pp. 1765–1779, 2021. doi: 10.1007/s00366-019-00910-1 CR - [16] Z. Zhao, C. Liu, X. Xu, L. Sun, J. Wang, Y.Li, “An FFT-based method for estimating the in-plane elastic properties of honeycomb considering geometric imperfections at large elastic deformation,” Thin-Walled Structures, vol. 185, p. 110570, 2023. doi: 10.1016/j.tws.2023.110570 CR - [17] A. F. Yilmaz and M. Konal, “Enhanced Container Ship Hatch Cover using Topology Optimization Method for Lightweight Design and Optimal Costs,” Journal of Offshore Mechanics and Arctic Engineering, pp. 1–16, 2025. doi: 10.1115/1.4067799 CR - [18] T. Wu, M. Li, X. Zhu, and X. Lu, “Research on non-pneumatic tires with gradient anti-tetrachiral structures,” Mechanics of Advanced Materials and Structures, vol. 28, pp. 2351–2359, 2021. doi: 10.1080/15376494.2020.1734888 CR - [19] S. Liu, F. Zhang, B. Chao, and others, “Based on the preparation of dual-absorber agents using Ni and Ni/rGO for the fabrication of a dual honeycomb nested structure for wideband microwave absorption,” Composites Part B, vol. 284, p. 111735, 2024. doi: 10.1016/j.compositesb.2024.111735 CR - [20] X. Zhang, L. Zhang, and P. Zhang, “Equivalent constitutive equations of honeycomb material using micro-polar theory to model thermo-mechanical interaction,” Composites Part B, vol. 43, pp. 3081–3087, 2012. doi: 10.1016/j.compositesb.2012.04.056 CR - [21] Y. Le, N. S. Ha, and N. S. Goo, “Advanced sandwich structures for thermal protection systems in hypersonic vehicles: A review,” Composites Part B, vol. 226, p. 109301, 2021. doi: 10.1016/j.compositesb.2021.109301 CR - [22] C. Peng and P. Tran, “Bioinspired functionally graded gyroid sandwich panel subjected to impulsive loadings,” Composites Part B, vol. 188, p. 107773, 2020. doi: 10.1016/j.compositesb.2020.107773 CR - [23] X. Xing, S. Yang, S. Lu, and others, “Energy absorption and optimization of bi-directional corrugated honeycomb aluminum,” Composites Part B, vol. 219, p. 108914, 2021. doi: 10.1016/j.compositesb.2021.108914 CR - [24] F. Pehlivan, “Optimizing 3D-Printed Auxetic Structures for Tensile Performance: Taguchi Method Application on Cell Size and Shape Orientation,” Manufacturing Technologies and Applications, vol. 5, no. 3, pp. 284–294, 2024. doi: 10.52795/mateca.1576416 CR - [25] S. Demir, A. Temiz, and F. Pehlivan, “The investigation of printing parameters effect on tensile characteristics for triply periodic minimal surface designs by Taguchi,” Polym Eng Sci, vol. 64, no. 3, pp. 1209–1221, 2024. doi: 10.1002/pen.26608 CR - [26] N. Ben Ali, M. Khlif, D. Hammami, and C. Bradai, “Experimental optimization of process parameters on mechanical properties and the layers adhesion of 3D printed parts,” J Appl Polym Sci, vol. 139, no. 9, p. 51706, 2022. doi: 10.1002/app.51706 CR - [27] F. H. Öztürk, “Optimization of adherend thickness and overlap length on failure load of bonded 3D printed PETG parts using response surface method,” Rapid Prototyp J, vol. 30, no. 8, pp. 1579–1591, 2024. doi: 10.1108/RPJ-02-2024-0090 CR - [28] A. F. Yilmaz, “Assessment of Combinability of S235JR-S460MC Structural Steels on Fatigue Performance,” Transactions of the Indian Institute of Metals, vol. 77, no. 2, pp. 323–331, Feb. 2024. doi: 10.1007/s12666-023-03113-x CR - [29] P. Wang, Y. Bian, F. Yang, H. Fan, and B. Zheng, “Mechanical properties and energy absorption of FCC lattice structures with different orientation angles,” Acta Mech, vol. 231, pp. 3129–3144, 2020. doi: 10.1007/s00707-020-02710-x CR - [30] A. Temiz, “The Effects of Process Parameters on Tensile Characteristics and Printing Time for Masked Stereolithography Components, Analyzed Using the Response Surface Method,” J. of Materi Eng and Perform., vol. 33, pp. 9356–9365, 2024. doi: 10.1007/s11665-023-08617-7 CR - [31] M. Günay, S. Gündüz, H. Yılmaz, N. Yaşar, and R. Kaçar, “PLA Esaslı Numunelerde Çekme Dayanımı İçin 3D Baskı İşlem Parametrelerinin Optimizasyonu,” Politeknik Dergisi, vol. 23, no. 1, pp. 73–79, Mar. 2020. doi: 10.2339/politeknik.422795 CR - [32] M. Xu, Z. Xu, Z. Zhang, H. Lei, Y. Bai, and D. Fang, “Mechanical properties and energy absorption capability of AuxHex structure under in-plane compression: Theoretical and experimental studies,” Int J Mech Sci, vol. 159, pp. 43–57, 2019. doi: 10.1016/j.ijmecsci.2019.05.044 UR - https://dergipark.org.tr/en/pub/gmbd/issue//1651338 L1 - https://dergipark.org.tr/en/download/article-file/4661248 ER -