TY - JOUR T1 - Mathematical modeling and performance analysis of heat recovery steam generator at Shat-Al Basra power plant AU - Hanoon, Mujtaba AU - Fares, Mohammad AU - Taher, Mohammad PY - 2025 DA - June Y2 - 2025 DO - 10.30521/jes.1652961 JF - Journal of Energy Systems JO - Journal of Energy Systems PB - Erol KURT WT - DergiPark SN - 2602-2052 SP - 194 EP - 206 VL - 9 IS - 2 LA - en AB - Energy is crucial to economic and social development. The increasing demand for electricity in the world is met by using various primary energy sources. Combined cycle gas turbines (CCGTs) are highly efficient power-generation plants due to their high temperatures and utilization of exhaust gases to generate additional power. Heat recovery steam generator (HRSG) is a very important component in CCGT, this component recovers the energy from flue gases exiting the gas turbine and generates the motive steam. In the present work, HRSG in Shatt-Al Basrah power plant has been simulated using a mathematical model to predict the temperature of the steam out of HRSG in different cases. Different parameters have been studied including the fuel of the power plant and the ambient temperature to calculate heat transfer area of each section and compare the results with actual data which shows a great agreement. The results show that maximum heat transfer occurs in the high-pressure evaporator section due to its large heat transfer area. It is also noticed that the highest LP steam temperature observed is 251.1°C at 15°C light diesel oil case and the highest HP steam temperature is 473.62°C also at 15°C light diesel oil case. KW - Combined cycle power plants KW - Heat exchanger KW - HRSG design KW - Waste heat recovery CR - [1] Ononogbo C, Nwosu EC, Nwakuba NR, et al. Opportunities of waste heat recovery from various sources: review of technologies and implementation. Heliyon 2023;9(2):e13590. doi:10.1016/j.heliyon.2023.e13590 CR - [2] Jouhara H, Khordehgah N, Almahmoud S, Delpech B, Chauhan A, Tassou SA. Waste heat recovery technologies and applications. Therm Sci Eng Prog 2018;6:268-89. doi:10.1016/j.tsep.2018.04.017 CR - [3] Farhat O, Faraj J, Hachem F, Castelain C, Khaled M. A recent review on waste heat recovery methodologies and applications: comprehensive review, critical analysis and potential recommendations. Clean Eng Technol 2022;6:100387. doi:10.1016/j.clet.2021.100387 CR - [4] Faisal SH, Naeem NK, Jassim AA. Energy and exergy study of Shatt Al-Basra gas turbine power plant. J Phys Conf Ser 2021;1773(1):012020. doi:10.1088/1742-6596/1773/1/012020 CR - [5] Giuffrida A, Romano MC, Lozza GG. Thermodynamic assessment of IGCC power plants with hot fuel gas desulfurization. Appl Energy 2010;87(11):3374-83. doi:10.1016/j.apenergy.2010.05.020 CR - [6] Polyzakis AL, Koroneos C, Xydis G. Optimum gas turbine cycle for combined cycle power plant. Energy Convers Manag 2008;49(4):551-63. doi:10.1016/j.enconman.2007.08.002 CR - [7] Cihan A, Hacıhafızoğlu O, Kahveci K. Energy-exergy analysis and modernization suggestions for a combined-cycle power plant. Int J Energy Res 2006;30(2):115-26. doi:10.1002/er.1133 CR - [8] Kumar PR, Raju VD. Off design performance analysis of a triple pressure reheat heat recovery steam generator. Int J Eng Res Technol (IJERT) 2012. CR - [9] Franco A, Casarosa C. On some perspectives for increasing the efficiency of combined cycle power plants. Appl Therm Eng 2002;22(13):1501-18. doi:10.1016/S1359-4311(02)00053-4 CR - [10] Manassaldi JI, Mussati SF, Scenna NJ. Optimal synthesis and design of heat recovery steam generation (HRSG) via mathematical programming. Energy 2011;36(1):475-85. doi:10.1016/j.energy.2010.10.017 CR - [11] Navaie AR. Thermal design and optimization of heat recovery steam generators and waste heat boilers [PhD thesis]. Berlin: Technische Universität Berlin; 2017. CR - [12] Ahmed A, Esmaeil KK, Irfan MA, Al-Mufadi FA. Design methodology of heat recovery steam generator in electric utility for waste heat recovery. Int J Low-Carbon Technol 2018;13:369-79. doi:10.1093/ijlct/cty045 CR - [13] Nag PK, De S. Design and operation of a heat recovery steam generator with minimum irreversibility. Appl Therm Eng 1997;17(4):385-91. doi:10.1016/S1359-4311(96)00033-6 CR - [14] Kaviri AG, Jaafar MNM, Lazim TM, Barzegaravval H. Exergoenvironmental optimization of heat recovery steam generators in combined cycle power plant through energy and exergy analysis. Energy Convers Manag 2013;67:27-33. doi:10.1016/j.enconman.2012.10.017 CR - [15] Naemi S, Saffar-Avval M, Kalhori SB, Mansoori Z. Optimum design of dual pressure heat recovery steam generator using non-dimensional parameters based on thermodynamic and thermoeconomic approaches. Appl Therm Eng 2013;52(2):371-84. doi:10.1016/j.applthermaleng.2012.12.004 CR - [16] Feng H, Zhong W, Wu Y, Tong S. Thermodynamic performance analysis and algorithm model of multi-pressure heat recovery steam generators (HRSG) based on heat exchangers layout. Energy Convers Manag 2014;81:282-89. doi:10.1016/j.enconman.2014.02.060 CR - [17] Durán MD, Valdés M, Rovira A, Rincón E. A methodology for the geometric design of heat recovery steam generators applying genetic algorithms. Appl Therm Eng 2013;52(1):77-83. doi:10.1016/j.applthermaleng.2012.10.041 CR - [18] Hajabdollahi H, Ahmadi P, Dincer I. An exergy-based multi-objective optimization of a heat recovery steam generator (HRSG) in a combined cycle power plant (CCPP) using evolutionary algorithm. Int J Green Energy 2011;8(1):44-64. doi:10.1080/15435075.2010.529779 CR - [19] Čehil M, Katulić S, Schneider DR. Novel method for determining optimal heat-exchanger layout for heat recovery steam generators. Energy Convers Manag 2017;149:851-59. doi:10.1016/j.enconman.2017.03.033 CR - [20] Chantasiriwan S. Determination of optimal total area of heat recovery steam generator. Case Stud Therm Eng 2024;53:103909. doi:10.1016/j.csite.2023.103909 CR - [21] Ganapathy V. Heat recovery steam generators: understand the basics. Chem Eng Prog 1996;92(8):31-45. CR - [22] Ganapathy V. Industrial boilers and heat recovery steam generators: design, applications, and calculations. New York: Marcel Dekker; 2003. CR - [23] Holman JP. Heat transfer. 10th ed. New York: McGraw-Hill; 2008. CR - [24] ESCOA Corp. ESCOA fintube manual. Oklahoma, USA: ESCOA; 1979. UR - https://doi.org/10.30521/jes.1652961 L1 - https://dergipark.org.tr/en/download/article-file/4668592 ER -