TY - JOUR T1 - Hemşirelik Alanında Yapay Zeka ile İlgili Yapılmış Araştırmaların Bibliyografik Analizi TT - Bibliometric Analysis of Research Related to Artificial Intelligence in the Field of Nursing AU - Şöhret, Turgut PY - 2025 DA - August Y2 - 2025 JF - Sağlık Bilimlerinde Yapay Zeka Dergisi JO - JAIHS PB - Izmir Katip Celebi University WT - DergiPark SN - 2757-9646 SP - 1 EP - 10 VL - 5 IS - 2 LA - tr AB - Amaç: Bu çalışmanın amacı, yapay zeka ile hemşirelik alanında yapılan araştırmaları bibliyografik olarak inceleyerek mevcut eğilimleri, araştırma boşluklarını ve gelecekteki yönelimleri ortaya koymaktır. Gereç ve Yöntemleri: Bu çalışma, tanımlayıcı bir bibliyometrik araştırma olarak tasarlanmıştır. Ocak 2015- Şubat 2025 tarihleri arasında hemşirelik alanında yayımlanan yapay zeka konulu çalışmalar, SCOPUS veri tabanında "Artificial intelligence" ve "Nursing" anahtar kelimeleri kullanılarak taranmıştır. Belirlenen dahil etme ve hariç tutma kriterlerine göre 128 çalışma bibliyometrik analize dahil edilmiştir. Veriler, SCOPUS ve VOSviewer 1.6.19 programı kullanılarak analiz edilmiştir. Analiz kapsamında yazarlar, anahtar kelimeler, araştırmaların yapıldığı ülkeler, üniversiteler, yayın yılları, atıf sayıları ve anahtar kelime ilişkileri gibi değişkenler incelenmiştir. Bulgular: Bu çalışma, 2015-2025 yılları arasında hemşirelikte yapay zeka araştırmalarının hızla arttığını göstermektedir. En fazla yayın 2024 yılında yapılmış, özellikle Kenrick Cato, Maxim Topaz ve Wentao Zhou gibi araştırmacılar öne çıkmıştır. Çalışmaların büyük kısmı ABD’de gerçekleştirilirken, Türkiye’de sınırlı sayıda araştırma yapılmıştır. Columbia University ve National University of Singapore en çok yayın yapan kurumlardır. Anahtar kelime analizinde "yapay zeka", "hemşirelik" ve "makine öğrenimi" terimleri sıkça kullanılmıştır. Yapay zekanın en çok hasta bakımı, klinik karar desteği ve eğitim alanlarında uygulandığı belirlenmiştir. Sonuçlar: Elde edilen bulgular, yapay zekanın hemşirelikteki rolünün giderek büyüdüğünü ve gelecekte daha kapsamlı araştırmalara ihtiyaç duyulacağını göstermektedir. Bu alandaki çalışmaların artırılmasıyla, hemşirelik uygulamalarının daha etkili ve verimli olacağı öngörülmektedir. KW - Bibliyografi KW - Hemşirelik KW - Yapay Zeka N2 - Purpose: The aim of this study is to examine the research conducted in the field of nursing with artificial intelligence bibliographically, thereby revealing current trends, research gaps, and future directions.Materials and Methods: This study is designed as a descriptive bibliometric analysis. Research articles on artificial intelligence in nursing, published between January 2015 and February 2025, were retrieved from the Scopus database using the keywords "Artificial intelligence" and "Nursing". Based on predefined inclusion and exclusion criteria, 128 studies were included in the bibliometric analysis. The data were analyzed using Scopus and VOSviewer 1.6.19 software. The analysis examined variables such as authors, keywords, countries of research, affiliated institutions, publication years, citation counts, and keyword co-occurrence networks.Results: This study demonstrates a rapid increase in artificial intelligence research in nursing between 2015 and 2025. The highest number of publications appeared in 2024, with key contributions from Kenrick Cato, Maxim Topaz, and Wentao Zhou. While most studies were conducted in the United States, research output from Turkey remained limited. Columbia University and the National University of Singapore were the most prolific institutions. Keyword analysis showed frequent use of terms such as "artificial intelligence," "nursing," and "machine learning." Artificial intelligence was mainly applied in patient care, clinical decision support, and education.Conclusion: The findings indicate that the role of artificial intelligence in nursing is expanding significantly, highlighting the need for more comprehensive research in the future. It is anticipated that increasing studies in this field will lead to more effective and efficient nursing practices. CR - 1. Ahuja AS. The impact of artificial intelligence in medicine on the future role of the physician. PeerJ. 2019; 7: e7702. doi: 10.7717/peerj.7702 CR - 2. Gökalp MG, Üzer MA. Yapay zeka çağında hemşirelik bakımı. Sağlık Bilimleri Üniversitesi Hemşirelik Dergisi. 2024; 6(1): 89-94. https://doi.org/10.48071/sbuhemsirelik.1349981 CR - 3. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y. Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology. 2017;2(4):230-243. doi:10.1136/svn-2017-000101 CR - 4. Anohina A. Advances in intelligent tutoring systems: problem-solving modes and model of hints. International Journal of Computers Communications Control. 2007;2(1):48-55. DOI:10.15837/ijccc.2007.1.2336 CR - 5. Topaz M, Ronquillo C, Peltonen LM, Pruinelli L, Sarmiento RF, Badger MK, Lee Y. L. et al. Nurse informaticians report low satisfaction and multi-level concerns with electronic health records: Results from an international survey. AMIA Annual Symposium Proceedings. 2017:2016-2025. CR - 6. Ronquillo CE, Peltonen LM, Pruinelli L, Chu CH, Bakken S, Beduschi A, Topaz M. et al. Artificial intelligence in nursing: Priorities and opportunities from an international invitational think‐tank. Journal of Advanced Nursing. 2021; 77(9): 3707-3717. https://doi.org/10.1111/jan.14855 CR - 7. World Health Organization. State of the world’s nursing 2020: Investing in education, jobs and leadership. WHO. 2020. CR - 8. Buchanan C, Howitt ML, Wilson R, Booth RG, Risling T, Bamford M. Predicted influences of artificial intelligence on nursing education: Scoping review. JMIR Nursing. 2021;3(1):e23933. https://doi.org/10.2196/23933 CR - 9. Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak RN, Kroeker KI. An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digital Medicine. 2020;3(1):1-10. https://doi.org/10.1038/s41746-020-0221-y CR - 10. Seibert K, Domhoff D, Bruch D, Schulte-Althoff M, Fürstenau D, Biessmann F, Wolf-Ostermann K. Application scenarios for artificial intelligence in nursing care: Rapid review. Journal of Medical Internet Research. 2021;23(11) e26522. https://doi.org/10.2196/ 26522 CR - 11. Özsezer G. Hemşirelik alanında yapay zekanın geleceği. Journal of Human Sciences. 2022;19(2): 285-299. doi: 10.14687/jhs.v19i2.6217 CR - 12. McGonigle D, Mastrian KG. Nursing informatics and the foundation of knowledge. Jones & Bartlett Learning. 2024. CR - 13. Robert N. How artificial intelligence is changing nursing. Nursing Management. 2019;50(9):30-39. https://doi.org/10.1097/01.NUMA.0000578988.56622.21 CR - 14. van Eck NJ, Waltmann L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523-538. https://doi.org/10.1007/s11192-009-0146-3 CR - 15. Ding X, Yang Z. Knowledge mapping of platform research: A visual analysis using VOSviewer and CiteSpace. Electronic Commerce Research. 2022;22:787-809. https://doi.org/10.1007/s10660-020-09410-7 CR - 16. Ageel M. Pandemic critical care research during the Covid-19 (2020-2022): A bibliometric analysis using Vosviewer. BioMed Research International. 2022; 8564649. https://doi.org/10.1155/2022/8564649 UR - https://dergipark.org.tr/en/pub/jaihs/issue//1655305 L1 - https://dergipark.org.tr/en/download/article-file/4679466 ER -