TY - JOUR T1 - COMPUTATIONAL EFFICIENCY ANALYSIS OF MACROSCOPIC FUNDAMENTAL DIAGRAM-BASED OPTIMAL ROAD TRAFFIC FLOW CONTROL METHODS AU - Sırmatel, Işık İlber PY - 2025 DA - September Y2 - 2025 DO - 10.18038/estubtda.1656397 JF - Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering JO - Estuscience - Se PB - Eskisehir Technical University WT - DergiPark SN - 2667-4211 SP - 203 EP - 216 VL - 26 IS - 3 LA - en AB - Traffic modeling and control in large-scale urban road networks present significant challenges. The macroscopic fundamental diagram provides a means of formulating dynamical traffic models of such networks, thereby enabling the development of model-based design techniques for state estimation and feedback control. In this article we focus on the computational efficiency of macroscopic fundamental diagram-based nonlinear model predictive control schemes for perimeter control and route guidance actuated networks, which are macroscopic actuation methods involving traffic flow manipulation between adjacent network neighborhoods. A number of economic nonlinear model predictive control schemes, based on direct methods from the numerical optimal control literature, are implemented using a variety of nonlinear programming solvers. The computational efficiency of the schemes is evaluated via computer simulations of congestion control scenarios for macroscopic fundamental diagram-based network models with different numbers of regions using randomly generated traffic demand profiles. The results indicate that the proper pairing of direct methods and solvers yields significant improvements in computational efficiency for macroscopic fundamental diagram-based control schemes, thereby improving the real-time feasibility and, consequently, the field deployment potential of the resulting macroscopic road traffic flow control algorithms. KW - Macroscopic fundamental diagram KW - Large-scale urban road networks KW - Traffic perimeter control KW - Route guidance KW - Model predictive control CR - [1] Papageorgiou M, Diakaki C, Dinopoulou V, Kotsialos A, Wang Y. Review of road traffic control strategies. Proceedings of the IEEE, 2003; Dec; 91(12):2043-67. https://doi.org/10.1109/JPROC.2003.819610 CR - [2] Godfrey JW. The mechanism of a road network. Traffic Engineering & Control. 1969; Nov;8(8). https://trid.trb.org/View/117139 CR - [3] Geroliminis N, Daganzo CF. Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings. Transportation Research Part B: Methodological, 2008; Nov 1;42(9):759-70. https://doi.org/10.1016/j.trb.2008.02.002 CR - [4] Loder A, Ambühl L, Menendez M, Axhausen KW. Understanding traffic capacity of urban networks. Scientific Reports, 2019; Nov 8;9(1):16283. https://doi.org/10.1038/s41598-019-51539-5 CR - [5] Geroliminis N, Sun J. Properties of a well-defined macroscopic fundamental diagram for urban traffic. Transportation Research Part B: Methodological, 2011; Mar 1;45(3):605-17. https://doi.org/10.1016/j.trb.2010.11.004 CR - [6] Daganzo CF. Urban gridlock: Macroscopic modeling and mitigation approaches. Transportation Research Part B: Methodological, 2007; Jan 1;41(1):49-62. https://doi.org/10.1016/j.trb.2006.03.001 CR - [7] Keyvan-Ekbatani M, Kouvelas A, Papamichail I, Papageorgiou M. Exploiting the fundamental diagram of urban networks for feedback-based gating. Transportation Research Part B: Methodological, 2012; Dec 1;46(10):1393-403. https://doi.org/10.1016/j.trb.2012.06.008 CR - [8] Aboudolas K, Geroliminis N. Perimeter and boundary flow control in multi-reservoir heterogeneous networks. Transportation Research Part B: Methodological, 2013; Sep 1;55:265-81. https://doi.org/10.1016/j.trb.2013.07.003 CR - [9] Haddad J, Mirkin B. Adaptive perimeter traffic control of urban road networks based on MFD model with time delays. International Journal of Robust and Nonlinear Control, 2016; Apr 1;26(6):1267-85. https://doi.org/10.1002/rnc.3502 CR - [10] Kouvelas A, Saeedmanesh M, Geroliminis N. Enhancing model-based feedback perimeter control with data-driven online adaptive optimization. Transportation Research Part B: Methodological, 2017; Feb 1;96:26-45. https://doi.org/10.1016/j.trb.2016.10.011 CR - [11] Haddad J, Shraiber A. Robust perimeter control design for an urban region. Transportation Research Part B: Methodological, 2014 Oct 1;68:315-32. https://doi.org/10.1016/j.trb.2014.06.010 CR - [12] Zhong RX, Chen C, Huang YP, Sumalee A, Lam WH, Xu DB. Robust perimeter control for two urban regions with macroscopic fundamental diagrams: A control-Lyapunov function approach. Transportation Research Part B: Methodological, 2018; Nov 1;117:687-707. https://doi.org/10.1016/j.trb.2017.09.008 CR - [13] Haddad J. Optimal perimeter control synthesis for two urban regions with aggregate boundary queue dynamics. Transportation Research Part B: Methodological, 2017; Feb 1;96:1-25. https://doi.org/10.1016/j.trb.2016.10.016 CR - [14] Aalipour A, Kebriaei H, Ramezani M. Analytical optimal solution of perimeter traffic flow control based on MFD dynamics: A Pontryagin’s maximum principle approach. IEEE Transactions on Intelligent Transportation Systems, 2018; Oct 18;20(9):3224-34. https://doi.org/10.1109/TITS.2018.2873104 CR - [15] Geroliminis N, Haddad J, Ramezani M. Optimal perimeter control for two urban regions with macroscopic fundamental diagrams: A model predictive approach. IEEE Transactions on Intelligent Transportation Systems, 2012; Nov 15;14(1):348-59. https://doi.org/10.1109/TITS.2012.2216877 CR - [16] Ramezani M, Haddad J, Geroliminis N. Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control. Transportation Research Part B: Methodological, 2015; Apr 1;74:1-9. https://doi.org/10.1016/j.trb.2014.12.010 CR - [17] Ni W, Cassidy M. City-wide traffic control: Modeling impacts of cordon queues. Transportation Research Part C: Emerging Technologies, 2020; Apr 1;113:164-75. https://doi.org/10.1016/j.trc.2019.04.024 CR - [18] Sirmatel II, Geroliminis N. Stabilization of city-scale road traffic networks via macroscopic fundamental diagram-based model predictive perimeter control. Control Engineering Practice, 2021; Apr 1;109:104750. https://doi.org/10.1016/j.conengprac.2021.104750 CR - [19] Genser A, Kouvelas A. Dynamic optimal congestion pricing in multi-region urban networks by application of a Multi-Layer-Neural network. Transportation Research Part C: Emerging Technologies, 2022; Jan 1;134:103485. https://doi.org/10.1016/j.trc.2021.103485 CR - [20] Yildirimoglu M, Ramezani M. Demand management with limited cooperation among travellers: A doubly dynamic approach. Transportation Research Part B: Methodological, 2020; Feb 1;132:267-84. https://doi.org/10.1016/j.trb.2019.02.012 CR - [21] Sirmatel II, Geroliminis N. Economic model predictive control of large-scale urban road networks via perimeter control and regional route guidance. IEEE Transactions on Intelligent Transportation Systems, 2017; Jun 30;19(4):1112-21. https://doi.org/10.1109/TITS.2017.2716541 CR - [22] Menelaou C, Timotheou S, Kolios P, Panayiotou CG. Joint route guidance and demand management for real-time control of multi-regional traffic networks. IEEE Transactions on Intelligent Transportation Systems, 2021; May 18;23(7):8302-15. https://doi.org/10.1109/TITS.2021.3077870 CR - [23] Saeedmanesh M, Kouvelas A, Geroliminis N. An extended Kalman filter approach for real-time state estimation in multi-region MFD urban networks. Transportation Research Part C: Emerging Technologies, 2021; Nov 1;132:103384. https://doi.org/10.1016/j.trc.2021.103384 CR - [24] Sirmatel II, Geroliminis N. Nonlinear moving horizon estimation for large-scale urban road networks. IEEE Transactions on Intelligent Transportation Systems, 2019; Oct 14;21(12):4983-94. https://doi.org/10.1109/TITS.2019.2946324 CR - [25] Saeedmanesh M, Geroliminis N. Clustering of heterogeneous networks with directional flows based on “Snake” similarities. Transportation Research Part B: Methodological, 2016; Sep 1;91:250-69. https://doi.org/10.1016/j.trb.2016.05.008 CR - [26] Yildirimoglu, M., Ramezani, M. and Geroliminis, N, Equilibrium analysis and route guidance in large-scale networks with MFD dynamics. Transportation Research Part C: Emerging Technologies, 2015; 59, pp.404-420. https://doi.org/10.1016/j.trc.2015.05.009 CR - [27] Hicks GA, Ray WH. Approximation methods for optimal control synthesis. The Canadian Journal of Chemical Engineering, 1971; Aug;49(4):522-8. https://doi.org/10.1002/cjce.5450490416 CR - [28] Bock HG, Plitt KJ. A multiple shooting algorithm for direct solution of optimal control problems. IFAC Proceedings Volumes, 1984; Jul 1;17(2):1603-8. https://doi.org/10.1016/S1474-6670(17)61205-9 CR - [29] Tsang TH, Himmelblau DM, Edgar TF. Optimal control via collocation and non-linear programming. International Journal of Control, 1975; May 1;21(5):763-8. https://doi.org/10.1080/00207177508922030 CR - [30] Andersson JA, Gillis J, Horn G, Rawlings JB, Diehl M. CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation, 2019; Mar 14;11:1-36. https://doi.org/10.1007/s12532-018-0139-4 CR - [31] Ferreau HJ, Kirches C, Potschka A, Bock HG, Diehl M. qpOASES: A parametric active-set algorithm for quadratic programming. Mathematical Programming Computation, 2014; Dec;6:327-63. https://doi.org/10.1007/s12532-014-0071-1 CR - [32] Wächter A, Biegler LT. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 2006; Mar;106:25-57. https://doi.org/10.1007/s10107-004-0559-y CR - [33] Nocedal J, Wright SJ. Numerical Optimization. New York, NY: Springer New York; 2006; Dec 11. https://doi.org/10.1007/978-0-387-40065-5 UR - https://doi.org/10.18038/estubtda.1656397 L1 - https://dergipark.org.tr/en/download/article-file/4684389 ER -