TY - JOUR T1 - Salvia cadmica as a potential agent in biofilm-related infection prevention AU - İşitez, Nilay AU - Erdoğmuş, Sevim Feyza AU - Sarıkürkcü, Cengiz PY - 2025 DA - September Y2 - 2025 JF - International Journal of Secondary Metabolite JO - Int. J. Sec. Metabolite PB - İzzet KARA WT - DergiPark SN - 2148-6905 SP - 743 EP - 754 VL - 12 IS - 4 LA - en AB - This study investigates the antibiofilm activity of Salvia cadmica (S. cadmica) aqueous-ethanol extract against Staphylococcus aureus (S. aureus) ATCC 25923, a well-known biofilm-forming bacterium. The antibiofilm efficacy of the extract on both planktonic and biofilm forms of S. aureus ATCC 25923 was assessed using the MTT reduction assay, while morphological alterations were examined by scanning electron microscopy. A dose-dependent increase in biofilm inhibition was observed, with biofilm inhibition and eradication rates reaching 34.07±0.44% and 35.71±0.4%, respectively, at 2× MIC concentration of plant extract. Microbiological analyses confirmed the antibiofilm potential of S. cadmica extract against S. aureus ATCC 25923. These findings highlight the promising antibiofilm properties of Salvia cadmica extract, suggesting its potential application in the treatment of infections associated with biofilm-forming S. aureus ATCC 25923. Future research should aim to isolate and characterize individual bioactive compounds from S. cadmica to better understand their mechanisms of action and potential synergistic effects. KW - Antibiofilm KW - Salvia cadmica KW - Staphylococcus aureus CR - Bahadori, M.B., Salehi, P., & Sonboli, A. (2017). Comparative study of the essential oil composition of Salvia urmiensis and its enzyme inhibitory activities linked to diabetes mellitus and Alzheimer’s disease. International Journal of Food Properties, 20, 2974 - 2981. https://doi.org/10.1080/10942912.2016.1263862 CR - Bahadori, M.B., Valizadeh, H., Asghari, B., Dinparast, L., Moridi Farimani, M., & Bahadori, S. (2015). Chemical composition and antimicrobial, cytotoxicity, antioxidant and enzyme inhibitory activities of Salvia spinosa L. Journal of Functional Foods, 18, 727-736. https://doi.org/10.1016/j.jff.2015.09.011 CR - Bahadori, S., Giglou, M.T., Esmaielpour, B., Dehdar, B., Estaji, A., Hano, C., Gohari, G., Vergine, M., & Vita, F. (2023). Antioxidant compounds of potato breeding genotypes and commercial cultivars with yellow, light yellow, and white flesh in Iran. Plants (Basel), 12(8), 1707. https://doi.org/10.3390/plants12081707 CR - Baser, K.H.C., Demirci, B., Kurkcuoglu, M., Satil, F., & Tümen, G. (2009). Comparative morphological and phytochemical characterization of Salvia cadmica Boiss. and S. smyrnaea Boiss. Pakistan Journal of Botany, 41, 1545-1555. CR - Bazargani, M.M., & Rohloff, J. (2016). Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control, 61, 156-164. https://doi.org/10.1016/j.foodcont.2015.09.036 CR - Behçet, L., & Avlamaz, D. (2009). A new record for Turkey: Salvia aristata aucher ex benth. (Lamiaceae). [Article]. Turkish Journal of Botany, 33(1), 61-63. https://doi.org/10.3906/bot-0808-14 CR - Boles, B.R., & Horswill, A.R. (2011). Staphylococcal biofilm disassembly. Trends Microbiol, 19(9), 449-455. https://doi.org/10.1016/j.tim.2011.06.004 CR - Ciftci, A., & Aksoy, A. (2015). Antibiyotiklere karşı oluşan direnç mekanizmaları [Acquired resistance mechanisms against antibiotics]. Turkiye Klinikleri J Vet Sci Pharmacol Toxicol-Special Topics, 1, 1-10. CR - CLSI. (2009). Clinical and laboratory standards institute. methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 8th ed. Wayne PA: CLSI. Approved standard M7-A8. CR - Del Pozo, J.L. (2018). Biofilm-related disease. Expert Rev Anti Infect Ther, 16(1), 51-65. https://doi.org/10.1080/14787210.2018.1417036 CR - Doğan, M., Akıcı, N., Diken, M., Doğan, S., Kardas, B., & Dirmenci, T. (2021). Biological activities of some Salvia species. Zeitschrift für Naturforschung C, 77. https://doi.org/10.1515/znc-2021-0136 CR - Donlan, R.M., & Costerton, J.W. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev, 15(2), 167 193. https://doi.org/10.1128/CMR.15.2.167-193.2002 CR - Ebbensgaard, A., Kouskoumvekaki, I., Vejborg, R., & Klemm, P. (2010). Chemoinformatics-assisted development of new anti-biofilm compounds. Applied microbiology and biotechnology, 87, 309-317. https://doi.org/10.1007/s00253-010-2471-0 CR - Erdoğmuş, S.F., Bilecen, C., Erdal Altıntaş, Ö., Ulukütük, S., & Kargıoğlu, M. (2022). The antibiofilm effects of some Cistus spp. against pathogenic microorganisms. International Journal of Plant Based Pharmaceuticals, 2(2), 252-260. https://doi.org/10.29228/ijpbp.7 CR - Gebreyohannes, G., Nyerere, A., Bii, C., & Sbhatu, D.B. (2019). Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon, 5(8), e02192. https://doi.org/10.1016/j.heliyon.2019.e02192 CR - Gonciarz, W., Piątczak, E., Płoszaj, P., Gościniak, G., & Chmiela, M. (2022). Salvia cadmica extracts rich in polyphenols neutralize a deleterious effects of oxidative stress driven by Helicobacter pylori lipopolysaccharide in cell cultures of gastric epithelial cells or fibroblasts. Industrial Crops and Products, 178, 114633. https://doi.org/10.1016/j.indcrop.2022.114633 CR - Hall-Stoodley, L., Costerton, J.W., & Stoodley, P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol, 2(2), 95 108. https://doi.org/10.1038/nrmicro821 CR - Herbert-Doctor, L.A., Uc-Cachón, A.H., Dzul-Beh, A., González-Sánchez, A.A., Araujo-León, J.A., Molina-Salinas, G.M., Pilotzi-Xahuentitla, H., Martín-Quintal, Z.D.R., & Ortiz-Andrade, R. (2025). Chemometric and dereplication analyses of the anti-staphylococcus aureus strains activity of Salvia hispanica L. seeds. J Med Food, 28(6), 615-624. https://doi.org/10.1089/jmf.2024.0241 CR - Kiedrowski, M.R., & Horswill, A.R. (2011). New approaches for treating staphylococcal biofilm infections. Ann N Y Acad Sci, 1241, 104-121. https://doi.org/10.1111/j.1749-6632.2011.06281.x CR - Kocak, M.S., Sarikurkcu, C., Cengiz, M., Kocak, S., Uren, M.C., & Tepe, B. (2016). Salvia cadmica: Phenolic composition and biological activity. Industrial Crops and Products, 85, 204-212. https://doi.org/10.1016/j.indcrop.2016.03.015 CR - Kuźma, Ł., Rózalski, M., Walencka, E., Rózalska, B., & Wysokińska, H. (2007). Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci. Phytomedicine, 14(1), 31-35. https://doi.org/10.1016/j.phymed.2005.10.008 CR - Latiff, N.A., Ong, P.Y., Abd Rashid, S.N.A., Abdullah, L.C., Mohd Amin, N.A., & Fauzi, N.A.M. (2021). Enhancing recovery of bioactive compounds from Cosmos caudatus leaves via ultrasonic extraction. Sci Rep, 11(1), 17297. https://doi.org/10.1038/s41598-021-96623-x CR - Li, X., Wang, X., Chen, D., & Chen, S. (2011). Antioxidant activity and mechanism of protocatechuic acid in vitro. Functional Foods in Health and Disease, 1(7), 232-244. https://doi.org/10.31989/ffhd.v1i7.127 CR - Lin, M.H., Chang, F.R., Hua, M.Y., Wu, Y.C., & Liu, S.T. (2011). Inhibitory effects of 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose on biofilm formation by Staphylococcus aureus. Antimicrob Agents Chemother, 55(3), 1021 1027. https://doi.org/10.1128/AAC.00843-10 CR - Ma, J., Zheng, Y., Tang, W., Yan, W., Nie, H., Fang, J., & Liu, G. (2020). Dietary polyphenols in lipid metabolism: A role of gut microbiome. Anim Nutr, 6(4), 404 409. https://doi.org/10.1016/j.aninu.2020.08.002 CR - Naveed, M., Hejazi, V., Abbas, M., Kamboh, A.A., Khan, G.J., Shumzaid, M., Ahmad, F., Babazadeh, D., FangFang, X., Modarresi-Ghazani, F., WenHua, L., & XiaoHui, Z. (2018). Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed Pharmacother, 97, 67-74. https://doi.org/10.1016/j.biopha.2017.10.064 CR - Ożarowski, M., Piasecka, A., Gryszczyńska, A., Sawikowska, A., Pietrowiak, A., Opala, B., Mikołajczak, P.Ł., Kujawski, R., Kachlicki, P., Buchwald, W., & Seremak-Mrozikiewicz, A. (2017). Determination of phenolic compounds and diterpenes in roots of Salvia miltiorrhiza and Salvia przewalskii by two LC–MS tools: Multi-stage and high resolution tandem mass spectrometry with assessment of antioxidant capacity. Phytochemistry Letters, 20, 331-338. https://doi.org/10.1016/j.phytol.2016.12.001 CR - Payne, D.E., Martin, N.R., Parzych, K.R., Rickard, A.H., Underwood, A., & Boles, B.R. (2013). Tannic acid inhibits Staphylococcus aureus surface colonization in an IsaA-dependent manner. Infect Immun, 81(2), 496-504. https://doi.org/10.1128/IAI.00877-12 CR - Piątczak, E., Owczarek, A., Lisiecki, P., Gonciarz, W., Kozłowska, W., Szemraj, M., Chmiela, M., Kiss, A.K., Olszewska, M.A., & Grzegorczyk-Karolak, I. (2021). Identification and quantification of phenolic compounds in Salvia cadmica Boiss. and their biological potential. Industrial Crops and Products, 160, 113113. CR - Quave, C.L., Estévez-Carmona, M., Compadre, C.M., Hobby, G., Hendrickson, H., Beenken, K.E., & Smeltzer, M.S. (2012). Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve response to antibiotics. PLoS One, 7(1), e28737. https://doi.org/10.1371/journal.pone.0028737 CR - Sandasi, M., Leonard, C.M., & Viljoen, A.M. (2010). The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Lett Appl Microbiol, 50(1), 30-35. https://doi.org/10.1111/j.1472-765X.2009.02747.x CR - Savage, V.J., Chopra, I., & O'Neill, A.J. (2013). Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob Agents Chemother, 57(4), 1968-1970. https://doi.org/10.1128/aac.02008-12 CR - Stenz, L., François, P., Fischer, A., Huyghe, A., Tangomo, M., Hernandez, D., Cassat, J., Linder, P., & Schrenzel, J. (2008). Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus. FEMS Microbiol Lett, 287(2), 149-155. https://doi.org/10.1111/j.1574-6968.2008.01316.x CR - Stewart, P.S., & Costerton, J.W. (2001). Antibiotic resistance of bacteria in biofilms. Lancet, 358(9276), 135-138. https://doi.org/10.1016/s0140-6736(01)05321-1 CR - Swamy, M.K., Sinniah, U.R., & Ghasemzadeh, A. (2018). Anticancer potential of rosmarinic acid and its improved production through biotechnological interventions and functional genomics. Appl Microbiol Biotechnol, 102(18), 7775-7793. https://doi.org/10.1007/s00253-018-9223-y CR - Szczuka, E., & Kaznowski, A. (2014). Antimicrobial activity of tigecycline alone or in combination with rifampin against Staphylococcus epidermidis in biofilm. Folia Microbiol (Praha), 59(4), 283-288. https://doi.org/10.1007/s12223-013-0296-9 CR - Teanpaisan, R., Senapong, S., & Puripattanavong, J. (2014a). In vitro Antimicrobial and Antibiofilm Activity of Artocarpus Lakoocha (Moraceae) Extract against Some Oral Pathogens. Tropical Journal of Pharmaceutical Research, 13, 1149. https://doi.org/10.4314/tjpr.v13i7.20 CR - Teanpaisan, R., Senapong, S., & Puripattanavong, J. (2014b). In vitro antimicrobial and antibiofilm activity of Artocarpus lakoocha (Moraceae) extract against some oral pathogens. Tropical Journal of Pharmaceutical Research, 13(7), 1149-1155. CR - Yılmaz Öztürk, B., Yenice, B., & Dag, I. (2022). In vitro effect of farnesol on planktonic cells and dual biofilm formed by Candida albicans and Escherichia coli. Biofouling, 38, 1-12. https://doi.org/10.1080/08927014.2022.2066530 CR - Zhao, J., Davis, L.C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv, 23(4), 283 333. https://doi.org/10.1016/j.biotechadv.2005.01.003 UR - https://dergipark.org.tr/en/pub/ijsm/issue//1656804 L1 - https://dergipark.org.tr/en/download/article-file/4686152 ER -