TY - JOUR T1 - Metilen Mavisi Boyasının Adsorpsiyon Yoluyla Sulu Çözeltilerden Giderilmesinde Modifiye Edilmiş Midyat Taşının Kullanımı TT - Removal of Methylene Blue Dye from Aqueous Solutions by Adsorption Using Modified Midyat Stone AU - Canpolat, Mutlu AU - Altunkaynak, Yalçın PY - 2025 DA - October Y2 - 2025 DO - 10.35414/akufemubid.1659381 JF - Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi PB - Afyon Kocatepe University WT - DergiPark SN - 2149-3367 SP - 1081 EP - 1090 VL - 25 IS - 5 LA - tr AB - Bu çalışmada, nitrik asit (HNO₃) ile modifiye edilmiş Midyat taşı (MMS) adsorbanının atıksulardan metilen mavisi (MB) giderimindeki adsorpsiyon performansı değerlendirilmiştir. Adsorpsiyon sürecine etki eden temas süresi ve başlangıç MB konsantrasyonu gibi çeşitli parametreler incelenerek adsorpsiyon verimliliği üzerindeki etkileri araştırılmıştır. Yapılan deneyler sonucunda, MB giderimi için optimum koşullar başlangıç MB konsantrasyonu 350 mg/L ve temas süresi 80 dakika olarak belirlenmiştir. MMS'nin adsorpsiyon öncesi ve sonrası yüzey morfolojisi ve kimyasal bileşimindeki değişiklikler, taramalı elektron mikroskobu (SEM), enerji dağılım spektroskopisi (EDS) ve Fourier dönüşümlü kızılötesi spektroskopisi (FTIR) teknikleri kullanılarak analiz edilmiştir. Elde edilen bulgular, MB adsorpsiyonunun Langmuir izoterm modeli ile uyumlu olduğunu ve süreçte hem kimyasal sorpsiyonun hem de tersinmezlik eğiliminin etkili olduğunu ortaya koymuştur. MB için maksimum adsorpsiyon kapasitesi 25, 35 ve 45 °C sıcaklıklarda sırasıyla 32.26, 34.13 ve 35.46 mg/g olarak hesaplanmıştır. Ayrıca, adsorpsiyon kinetiği analizleri, MB gideriminin yalancı ikinci dereceden (PSO) kinetik modeli ile iyi bir uyum gösterdiğini ortaya koymuştur. Elde edilen sonuçlar, MMS'nin yüksek adsorpsiyon kapasitesi, kolay temin edilebilirliği ve maliyet etkinliği sayesinde sulu ortamdan MB boyar maddesinin uzaklaştırılmasında etkili ve uygulanabilir bir adsorban olduğunu göstermektedir. KW - Midyat taşı KW - Adsorpsiyon KW - Metilen mavisi KW - İzoterm KW - Kinetik N2 - In this study, the adsorption performance of nitric acid (HNO₃)-modified Midyat stone (MMS) adsorbent on methylene blue (MB) removal from wastewater was evaluated. Various parameters affecting the adsorption process such as contact time and initial MB concentration were investigated and their effects on adsorption efficiency were investigated. As a result of the experiments, the optimum conditions for MB removal were determined as initial MB concentration of 350 mg/L and contact time of 80 minutes. The surface morphology and chemical composition of MMS before and after adsorption were analyzed using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) techniques. The results revealed that MB adsorption was in accordance with the Langmuir isotherm model and both chemical sorption and irreversibility tendency were effective in the process. The maximum adsorption capacity for MB was calculated as 32.26, 34.13 and 35.46 mg/g at 25, 35 and 45 °C, respectively. Furthermore, adsorption kinetics analyses revealed that MB removal was in good agreement with the pseudo-second order (PSO) kinetic model. The obtained results indicate that MMS is a highly effective and practical adsorbent for the removal of MB dye from aqueous media, owing to its high adsorption capacity, easy availability, and cost-effectiveness. CR - Almeida, C. A. P., Debacher, N. A., Downs, A. J., Cottet, L., & Mello, C. A. D., 2009. Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. Journal of colloïd and interface science, 332(1), 46-53. https://doi.org/10.1016/j.jcis.2008.12.012 CR - Altunkaynak, Y., Canpolat, M., & Aslan, M., 2023. Adsorption of lead (II) ions on kaolinite from aqueous solutions: isothermal, kinetic, and thermodynamic studies. Ionics, 29(10), 4311-4323. https://doi.org/10.1007/s11581-023-05157-x CR - Annadurai, G., Juang, R. S., & Lee, D. J., 2002. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of hazardous materials, 92(3), 263-274. https://doi.org/10.1016/S0304-3894(02)00017-1 CR - Banat, F., Al-Asheh, S., & Al-Makhadmeh, L., 2003. Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters. Process Biochemistry, 39(2), 193-202. https://doi.org/10.1016/S0032-9592(03)00065-7 CR - Canpolat, M., 2023. Removing Co (II) and Mn (II) ions effectively from aqueous solutions by means of chemically non‐processed Mardin stone waste: Equivalent, kinetic, and thermodynamic investigations. Environmental Progress & Sustainable Energy, 42(3), e14042. https://doi.org/10.1002/ep.14042 CR - Canpolat, M., & Altunkaynak, Y., 2024. Use of low-cost processed orange peel for effective removal of cobalt (II) and manganese (II) from aqueous solutions. Ionics, 30(1), 591-605. https://doi.org/10.1007/s11581-023-05291-6 CR - Ekinci, S., 2023. Elimination of Methylene Blue from Aqueous Medium Using an Agricultural Waste Product of Crude Corn Silk (Stylus maydis) and Corn Silk Treated with Sulphuric Acid. ChemistrySelect, 8(18), e202300284. https://doi.org/10.1002/slct.202300284 CR - Fu, Y., & Viraraghavan, T., 2000. Removal of a dye from an aqueous solution by the fungus Aspergillus niger. Water Quality Research Journal, 35(1), 95-112. https://doi.org/10.2166/wqrj.2000.006 CR - Ghosh, D., & Bhattacharyya, K. G., 2002. Adsorption of methylene blue on kaolinite. Applied clay science, 20(6), 295-300. https://doi.org/10.1016/S0169-1317(01)00081-3 CR - Hameed, B. H., Din, A. M., & Ahmad, A. L., 2007. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. Journal of hazardous materials, 141(3), 819-825. https://doi.org/10.1016/j.jhazmat.2006.07.049 CR - Kılınç, İ., Budakçı, M., & Korkmaz, M., 2022. Ahşap Yüzeylerde Boya/Vernikleri Temizlemek İçin Kullanılan Çevreci Yöntem ve Medyalar. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(4), 2079-2092. https://doi.org/10.29130/dubited.1038859 CR - Kılınç, İ., Budakçı, M., & Korkmaz, M., 2023. The Use of Environmentally Friendly Abrasive Blasting Media for Paint Removal from Wood Surfaces. BioResources, 18(1). https://doi.org/10.15376/biores.18.1.1185-1205 CR - Lee, J. W., Choi, S. P., Thiruvenkatachari, R., Shim, W. G., & Moon, H., 2006. Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dyes and pigments, 69(3), 196-203. https://doi.org/10.1016/j.dyepig.2005.03.008 CR - McKay, G. G. R. P. R., Ramprasad, G., & Pratapa Mowli, P., 1986. Equilibrium studies for the adsorption of dyestuffs from aqueous solutions by low-cost materials. Water, Air, and Soil Pollution, 29, 273-283. https://doi.org/10.1007/BF00158759 CR - McMullan, G., Meehan, C., Conneely, A., Kirby, N., Robinson, T., Nigam, P., ... & Smyth, W. F., 2001. Microbial decolourisation and degradation of textile dyes. Applied microbiology and biotechnology, 56, 81-87. https://doi.org/10.1007/s002530000587 CR - Tan, I. A. W., Ahmad, A. L., & Hameed, B. H., 2008. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. Journal of hazardous materials, 154(1-3), 337-346. https://doi.org/10.1016/j.jhazmat.2007.10.031 CR - Tural, B., Ertaş, E., & Tural, S., 2016. Removal of phenolic pollutants from aqueous solutions by a simple magnetic separation. Desalination and water treatment, 57(54), 26153-26164. https://doi.org/10.1080/19443994.2016.1162202 CR - Tural, B., Ertaş, E., Enez, B., Fincan, S. A., & Tural, S., 2017. Preparation and characterization of a novel magnetic biosorbent functionalized with biomass of Bacillus Subtilis: Kinetic and isotherm studies of biosorption processes in the removal of Methylene Blue. Journal of Environmental Chemical Engineering, 5(5), 4795-4802. https://doi.org/10.1016/j.jece.2017.09.019 CR - Weng, C. H., & Pan, Y. F., 2007. Adsorption of a cationic dye (methylene blue) onto spent activated clay. Journal of Hazardous Materials, 144(1-2), 355-362. https://doi.org/10.1016/j.jhazmat.2006.09.097 CR - Woolard, C. D., Strong, J., & Erasmus, C. R., 2002. Evaluation of the use of modified coal ash as a potential sorbent for organic waste streams. Applied Geochemistry, 17(8), 1159-1164. https://doi.org/10.1016/S0883-2927(02)00057-4 Yavuz, Ö., Altunkaynak, Y., & Güzel, F., 2003. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water research, 37(4), 948-952. https://doi.org/10.1016/S0043-1354(02)00409-8 UR - https://doi.org/10.35414/akufemubid.1659381 L1 - https://dergipark.org.tr/en/download/article-file/4697280 ER -