TY - JOUR T1 - Euler-Maclaurin-type Inequalities for $h-$convex Functions via Riemann-Liouville Fractional Integrals AU - Hezenci, Fatih AU - Budak, Hüseyin PY - 2025 DA - July Y2 - 2025 DO - 10.33434/cams.1660607 JF - Communications in Advanced Mathematical Sciences PB - Emrah Evren KARA WT - DergiPark SN - 2651-4001 SP - 57 EP - 69 VL - 8 IS - 2 LA - en AB - In this paper, some Euler-Maclaurin-type inequalities are established by using $h-$convex functions involving Riemann-Liouville fractional integrals. In precisely, using the properties of $h$-convex functions, we prove new Euler-Maclaurin-type inequalities. In addition, we present some Euler-Maclaurin-type inequalities for Riemann-Liouville fractional integrals by using Hölder inequality. Moreover, some Euler-Maclaurin-type inequalities are established by using power-mean inequality. Finally, by using the special choices of the obtained results, we obtain some Euler-Maclaurin-type inequalities. KW - Convex functions KW - Fractional calculus KW - Maclaurin KW - Quadrature formula CR - [1] S. Varosanec, On h-convexity, J. Math. Anal. Appl., 326(1) (2007), 303-311. https://doi.org/10.1016/j.jmaa.2006.02.086 CR - [2] D. S. Mitrinovic, J. E. Pečarić, A. M. Fink, Classical and New Inequalities in Analysis, Springer, Dordrecht, 1993. CR - [3] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Räumen, Publ. Inst. Math., 23(37) (1978), 13-20. CR - [4] C. E. M. Pearce, A. M. Rubinov, P-functions, quasi-convex functions and Hadamard-type inequalities, J. Math. Anal. Appl., 240(1) (1999), 92-104. https://doi.org/10.1006/jmaa.1999.6593 CR - [5] I. Iscan, New refinements for integral and sum forms, J. Inequal. Appl., 2019 (2019), Article ID 304, 11 pages. https://doi.org/10.1186/s13660-019-2258-5 CR - [6] R. Gorenflo, F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order, Springer Verlag, Wien, 1997. CR - [7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. CR - [8] S. S. Dragomir, On Simpson’s quadrature formula for mappings of bounded variation and applications, Tamkang J. Math., 30(1) (1999), 53-58. https://doi.org/10.5556/j.tkjm.30.1999.4207 CR - [9] U. S. Kirmaci, On some Bullen-type inequalities with the kth power for twice differentiable mappings and applications, J. Inequal. Math. Anal., 1(1) (2025), 47-64. https://doi.org/10.63286/jima.2025.04 CR - [10] J. Park, On Simpson-like type integral inequalities for differentiable preinvex functions, Appl. Math. Sci., 7(121) (2013), 6009-6021. http://dx.doi.org/10.12988/ams.2013.39498 CR - [11] P. J. Davis, P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York-San Francisco-London, 1975. CR - [12] S. Erden, S. Iftikhar, P. Kumam, M. U. Awan, Some Newton’s like inequalities with applications, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM, 114 (2020), Article ID 195, 13 pages. https://doi.org/10.1007/s13398-020-00926-z CR - [13] S. Gao, W. Shi, On new inequalities of Newton’s type for functions whose second derivatives absolute values are convex, Int. J. Pure Appl. Math., 74(1) (2012), 33-41. CR - [14] S. Iftikhar, P. Kumam, S. Erden, Newton’s-type integral inequalities via local fractional integrals, Fractals, 28(3) (2020), Article ID 2050037. https://doi.org/10.1142/S0218348X20500371 CR - [15] M. A. Noor, K. I. Noor, S. Iftikhar, Newton inequalities for p-harmonic convex functions, Honam Math. J., 40(2) (2018), 239-250. https://dx.doi.org/10.5831/HMJ.2018.40.2.239 CR - [16] Lj. Dedić, M. Matić, J. Pečarić, Euler-Maclaurin formulae, Math. Inequal. Appl., 6(2) (2003), 247–275. CR - [17] Lj. Dedić, M. Matić, J. Pečarić, A. Vukelic, On Euler-Simpson 3/8 formulae, Nonlinear Stud., 18(1) (2011), 1-26. CR - [18] F. Hezenci, H. Budak, Maclaurin-type inequalities for Riemann-Liouville fractional integrals, Ann. Univ. Mariae Curie-Skłodowska Sect. A Math., 76(2) (2022), 15-32. http://dx.doi.org/10.17951/a.2022.76.2.15-32 CR - [19] F. Hezenci, Fractional inequalities of corrected Euler-Maclaurin-type for twice-differentiable functions, Comput. Appl. Math., 42 (2023), 1-15, Article ID 92. https://doi.org/10.1007/s40314-023-02235-8 CR - [20] F. Hezenci, Fractional Maclaurin-type inequalities for twice-differentiable functions, Rocky Mountain J. Math., 55(1) (2025), 155-165. https://doi.org/10.1216/rmj.2025.55.155 CR - [21] I. Franjic, J. Pečarić, I. Perić, A. Vukelić, Euler Integral Identity, Quadrature Formulae and Error Estimations, Element, Zagreb, 2011. CR - [22] J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992. CR - [23] M. Gümüş, F. Hezenci, H. Budak, Some new approaches to fractional Euler–Maclaurin-Type inequalities via various function classes, Fractal Fract., 8(7) (2024), Article ID 372, 19 pages. https://doi.org/10.3390/fractalfract8070372 UR - https://doi.org/10.33434/cams.1660607 L1 - https://dergipark.org.tr/en/download/article-file/4703006 ER -