TY - JOUR T1 - Newton-type Inequalities for Fractional Integrals by Various Function Classes AU - Hezenci, Fatih AU - Budak, Hüseyin AU - Du, Tingsong PY - 2025 DA - June Y2 - 2025 DO - 10.32323/ujma.1660642 JF - Universal Journal of Mathematics and Applications JO - Univ. J. Math. Appl. PB - Emrah Evren KARA WT - DergiPark SN - 2619-9653 SP - 94 EP - 107 VL - 8 IS - 2 LA - en AB - The authors of the paper examine some Newton-type inequalities for various function classes using Riemann-Liouville fractional integrals. Namely, we establish some Newton-type inequalities for bounded functions by fractional integrals. In addition, we construct some fractional Newton-type inequalities for Lipschitzian functions. Furthermore, we offer some Newton-type inequalities by fractional integrals of bounded variation. Finally, we provide our results by using special cases of theorems and obtained examples. KW - Bounded functions KW - Convex functions KW - Lipschitzian functions KW - Newton-type inequalities CR - [1] J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992. CR - [2] S. Gao, W. Shi, On new inequalities of Newton’s type for functions whose second derivatives absolute values are convex, Int. J. Pure Appl. Math., 74(1) (2012), 33–41. CR - [3] W. Luangboon, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, Simpson-and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus, Mathematics, 9(12) (2021), Article ID 1338. http://dx.doi.org/10.3390/math9121338 CR - [4] M. A. Noor, K. I. Noor, S. Iftikhar, Some Newton’s type inequalities for harmonic convex functions, J. Adv. Math. Stud., 9(1) (2016), 07–16. CR - [5] M. A. Noor, K. I. Noor, S. Iftikhar, Newton inequalities for p-harmonic convex functions, Honam Math. J., 40(2) (2018), 239–250. https://dx.doi.org/10.5831/HMJ.2018.40.2.239 CR - [6] M. A. Ali, H. Budak, Z. Zhang, A new extension of quantum Simpson’s and quantum Newton’s type inequalities for quantum differentiable convex functions, Math. Methods Appl. Sci., 45(4) (2022), 1845–1863. https://doi.org/10.1002/mma.7889 CR - [7] S. Erden, S. Iftikhar, P. Kumam, P. Thounthong, On error estimations of Simpson’s second type quadrature formula, Math. Methods Appl. Sci., 2020 (2020), 11232-11244. https://doi.org/10.1002/mma.7019 CR - [8] S. Iftikhar, S. Erden, M. A. Ali, J. Baili, H. Ahmad, Simpson’s second-type inequalities for co-ordinated convex functions and applications for Cubature formulas, Fractal Fract., 6(1) (2022), Article ID 33. https://doi.org/10.3390/fractalfract6010033 CR - [9] M. A. Noor, K. I. Noor, M. U. Awan, Some Newton’s type inequalities for geometrically relative convex functions, Malays. J. Math. Sci., 9(3) (2015), 491–502. CR - [10] S. S. Dragomir On Simpson’s quadrature formula for mappings of bounded variation and applications, Tamkang J. Math., 30(1) (1999), 53–58. https://doi.org/10.5556/j.tkjm.30.1999.4207 CR - [11] R. Gorenflo, F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order, Springer Verlag, Wien, 1997. CR - [12] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. CR - [13] F. Hezenci, H. Budak, P. Kosem, A new version of Newton’s inequalities for Riemann-Liouville fractional integrals, Rocky Mountain J. Math., 53(1) (2023), 49–64. https://doi.org/10.1216/rmj.2023.53.49 CR - [14] S. Erden, S. Iftikhar, P. Kumam, M. U. Awan, Some Newton’s like inequalities with applications, Rev. Real Acad. Cienc. Exactas Fis. Nat. – A: Mat., 114 (2020), Article ID 195. https://doi.org/10.1007/s13398-020-00926-z CR - [15] T. Sitthiwirattham, K. Nonlaopon, M. A. Ali, H. Budak, Riemann-Liouville fractional Newton’s type inequalities for differentiable convex functions, Fractal Fract., 6(3) (2022), Article ID 175. https://doi.org/10.3390/fractalfract6030175 CR - [16] S. Iftikhar, P. Kumam, S. Erden, Newton’s-type integral inequalities via local fractional integrals, Fractals, 28(03) (2020), Article ID 2050037. https://doi.org/10.1142/S0218348X20500371 CR - [17] S. Iftikhar, S. Erden, P. Kumam, M. U. Awan, Local fractional Newton’s inequalities involving generalized harmonic convex functions, Adv. Difference Equ., 2020 (2020), article ID 185. https://doi.org/10.1186/s13662-020-02637-6 CR - [18] F. Hezenci, H. Budak, Some Perturbed Newton type inequalities for Riemann-Liouville fractional integrals, Rocky Mountain J. Math., 53(4) (2023), 1117–1127. https://doi.org/10.1216/rmj.2023.53.1117 CR - [19] C. Unal, F. Hezenci, H. Budak, Conformable fractional Newton-type inequalities with respect to differentiable convex functions, J. Inequal. Appl., 2023 (2023), Article ID 85. https://doi.org/10.1186/s13660-023-02996-0 CR - [20] H. Budak, C. Unal, F. Hezenci, A study on error bounds for Newton-type inequalities in conformable fractional integrals, Math. Slovaca, 74(2) (2019), 313–330. http://doi.org/10.1515/ms-2024-0024 CR - [21] M. U. Awan, M. A. Noor, T. S. Du, K. I. Noor, New refinements of fractional Hermite-Hadamard inequality, Rev. Real Acad. Cienc. Exactas Fis. Nat. –A: Mat., 113 (2019), 21–29. https://doi.org/10.1007/s13398-017-0448-x CR - [22] Z. Q. Yang, Y. J. Li, T. S. Du, A generalization of Simpson type inequality via differentiable functions using (s,m)-convex functions, Ital. J. Pure Appl. Math., 35 (2015), 327–338. CR - [23] M. W. Alomari A companion of Dragomir’s generalization of Ostrowski’s inequality and applications in numerical integration, Ukr. Math. J., 64 (2012), 435–450. http://dx.doi.org/10.1007/s11253-012-0661-x UR - https://doi.org/10.32323/ujma.1660642 L1 - https://dergipark.org.tr/en/download/article-file/4703159 ER -