TY - JOUR T1 - Apple peel extract based formation of organic-inorganic nanoflower with ıntrinsic peroxidase mimic and antimcrobial activities TT - Elma Kabuğu Ekstresi Temelli Organik-İnorganik Nançiçek ile İçsel Peroksidaz Benzeri ve Antimikrobiyal Aktiviteler AU - Nisari, Mustafa PY - 2025 DA - September Y2 - 2025 DO - 10.46309/biodicon.2025.1660959 JF - Biological Diversity and Conservation JO - BioDiCon PB - Ersin YÜCEL WT - DergiPark SN - 1308-5301 SP - 403 EP - 409 VL - 18 IS - 3 LA - en AB - IPurpose: In this study, we developed synthesis of hybrid organic-inorganic nanoflower (NF) composed of flavonoid-rich apple peel extract and Cu2+ ions acted as organic and inorganic components, respectively. The apple peel extract based NFs (Ap-NFs) showed peroxidase mimic and antimicrobial activities.Method: The Ap-NFs were characterized with by Scanning Electron Microscope (SEM) for monitoring morphology (size and shape), Fourier transform Infrared Spectroscopy (FTIR) for bending and stretching vibrations and X-Ray Diffraction (XRD) for elucidation of crystal structure of Ap-NFs. Findings: In terms of the catalytic activities, Ap-NFs catalyzed oxidation of guaiacol (2-methoxy phenol) to 3,3-dimethoxy-4,4-diphenoquinone in the presence of hydrogen peroxide (H2O2) through the Fenton reaction. Benefiting from both the Fenton reaction and porous morphology of Ap-NFs, their antimicrobial activities were tested towards, Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans).Conclusion: It is worthy to mention that, the Ap-NFs exhibited great antimicrobial activity in the presence of H2O2 by killing almost 99% of all microorganisms. The results are quite promising and we claim that Ap-NFs can be ideal candidate for catalytic activity and antimicrobial studies. KW - Apple Peel Extract KW - Organic-Inorganic Nanoflower KW - Peroxidase Mimic Activity KW - Fenton Reaction KW - Antimcrobial Activity N2 - Amaç: Bu çalışmada, flavonoid açısından zengin elma kabuğu özütü ve Cu2+ iyonlarının sırasıyla organik ve inorganik bileşenler olarak hareket ettiği hibrit organik-inorganik nanoçiçek (NF) sentezini geliştirdik. Metod: Elma kabuğu özütü temelli NÇ'ler (Ek-NÇ'ler) peroksidaz benzeri ve antimikrobiyal aktiviteler gösterdi. Ek-NÇ'lerin morfolojiyi (boyut ve şekil) izlemek için Taramalı Elektron Mikroskopu (SEM), eğilme ve gerilme titreşimleri için Fourier Dönüşümlü Kızılötesi Spektroskopisi (FTIR) ve Ek-NÇ'lerin kristal yapısını açıklamak için X-ışını kırınımı (XRD) ile karakterize edildi. Bulgular: Katalitik aktiviteler açısından, Ek-NÇ'ler hidrojen peroksit (H2O2) varlığında Fenton reaksiyonu yoluyla guaiacolün (2-metoksi fenol) 3,3-dimetoksi-4,4-difenokinona oksidasyonunu katalize etti. Hem Fenton reaksiyonundan hem de Ek-NÇ'lerin gözenekli morfolojisinden yararlanılarak, antimikrobiyal aktiviteleri Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) ve Candida albicans (C. albicans)'a karşı test edildi. Sonuç: Ek-NÇ'lerin H2O2 varlığında tüm mikroorganizmaların neredeyse %99'unu öldürerek büyük antimikrobiyal aktivite gösterdiğini belirtmekte fayda var. Sonuçlar oldukça ümit verici ve Ek-NÇ'lerin katalitik aktivite ve antimikrobiyal çalışmalar için ideal aday olabileceğini iddia ediyoruz. CR - [1]. Chormey, D. S., Erarpat, S., Zaman, B. T., Özdoğan, N., Yağmuroğlu, O., & Bakırdere, S. (2023). Nanoflower synthesis, characterization and analytical applications: a review. Environmental Chemistry Letters, 21(3), 1863-1880. [2]. Baldemir, A., Köse, N. B., Ildız, N., İlgün, S., Yusufbeyoğlu, S., Yilmaz, V., & Ocsoy, I. (2017). Synthesis and characterization of green tea (Camellia sinensis (L.) Kuntze) extract and its major components-based nanoflowers: a new strategy to enhance antimicrobial activity. RSC advances, 7(70), 44303-44308. CR - [3]. Durbilmez, G. D., Bor, E., Dönmez, C., Geçili, F., Özdemir, N., & Çalişkan, U. K. (2019). Synthesis of hybrid nanoflowers with plant extracts traditionally utilized in skin problems and their activity profile. In I. International Aromatic Plants and Cosmetic Symposium (p. 45). [4]. Molina, G. A., Esparza, R., López-Miranda, J. L., Hernández-Martínez, A. R., España-Sánchez, B. L., Elizalde-Peña, E. A., & Estevez, M. (2019). Green synthesis of Ag nanoflowers using Kalanchoe Daigremontiana extract for enhanced photocatalytic and antibacterial activities. Colloids and Surfaces B: Biointerfaces, 180, 141-149. CR - [5]. Ge, J., Lei, J. & Zare, R. (2012). Protein–inorganic hybrid nanoflowers. Nature Nanotech, 7(7), 428-432. doi: 10.1038/nnano.2012.80. CR - [6]. Wang, L. B., Wang, Y. C., He, R., Zhuang, A., Wang, X., Zeng, J., & Hou, J. G. (2013). A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance. Journal of the American Chemical Society, 135(4), 1272–1275. doi:10.1021/ja3120136. CR - [7]. Dadı, S., Ocsoy I., (2024). Role of pretty nanoflowers as novel versatile analytical tools for sensing in biomedical and bioanalytical applications. Smart Med, 3(1), e20230040. doi: 10.1002/SMMD.20230040. CR - [8]. Dadi, S., Temur, N., Gul, O. T., Yilmaz, V., & Ocsoy, I. (2023). In situ synthesis of horseradish peroxidase nanoflower@carbon nanotube hybrid nanobiocatalysts with greatly enhanced catalytic activity. Langmuir, 39(13), 4819–4828. doi: 10.1021/acs.langmuir.3c00260 CR - [9]. Gul, O. T., & Ocsoy, I. (2021). Co-Enzymes based nanoflowers incorporated-magnetic carbon nanotubes: A new generation nanocatalyst for superior removal of cationic and anionic dyes with great repeated use. Environmental Technology & Innovation, 24, 101992. doi: 10.1016/j.eti.2021.101992. CR - [10]. Yang, L., Zhang, X., Li, M., Qu, L., & Liu, Z. (2022). Acetylcholinesterase–Cu3(PO4)2 hybrid nanoflowers for electrochemical detection of dichlorvos using square-wave voltammetry. Analytical Methods, 14(39), 3911-3920. doi:10.1039/d2ay01014c. CR - [11]. Ocsoy, I., Dogru, E., & Usta, S. (2015). A new generation of flowerlike horseradish peroxides as a nanobiocatalyst for superior enzymatic activity. Enzyme and Microbial Technology, 75, 25-29. doi: 10.1016/j.enzmictec.2015.04.010 CR - [12]. Gokturk, E., Ocsoy, I., Turac, E., & Sahmetlioglu, E. (2020). Horseradish peroxidase‐based hybrid nanoflowers with enhanced catalytical activities for polymerization reactions of phenol derivatives. Polymers for Advanced Technologies, 31(10), 2371-2377. doi: 10.1002/pat.4956. CR - [13]. Wu, Z. F., Wang, Z., Zhang, Y., Ma, Y. L., He, C. Y., Li, H., ... & Li, Z. Q. (2016). Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity. Scientific reports, 6(1), 22412. doi:10.1038/srep22412 CR - [14]. Yilmaz, S. G., Demirbas, A., Karaagac, Z., Dadi, S., Celik, C., Yusufbeyoglu, S., & Ocsoy, I. (2022). Synthesis of taurine-Cu3(PO4)2 hybrid nanoflower and their peroxidase-mimic and antimicrobial properties. Journal of Biotechnology, 343, 96-101. doi: 10.1016/j.jbiotec.2021.11.009 CR - [15]. Aslan, T., Dadi, Ş., Kafdag, O., Temur, N., Ildiz, N., Ocsoy, I., & Ustun, Y. (2024). Rational design of EDTA-incorporated nanoflowers as novel and effective endodontic disinfection against biofilms. Odontology, 112(2), 444-452. doi:10.1007/s10266-023-00857-2 CR - [16]. Dadi, S., Cardoso, M. H., Mandal, A. K., Franco, O. L., Ildiz, N., & Ocsoy, I. (2023). Natural molecule ıncorporated magnetic organic‐ınorganic nanoflower: ınvestigation of ıts dual fenton reaction‐dependent enzyme‐like catalytic activities with cyclic use. ChemistrySelect, 8(13), e202300404. doi: 10.1002/slct.202300404 CR - [17]. Dadi, S., Celik, C., Mandal, A. K., & Ocsoy, I. (2021). Dopamine and norepinephrine assistant synthesized nanoflowers immobilized membrane with peroxidase mimic activity for efficient detection of model substrates. Applied Nanoscience, 11, 117-125. doi: 10.1007/s13204-020-01577-7 CR - [18]. Koca, F. D., Yilmaz, D. D., Onmaz, N. E., & Ocsoy, I. (2020). Peroxidase-like activity and antimicrobial properties of curcumin-inorganic hybrid nanostructure. Saudi Journal of Biological Sciences, 27(10), 2574-2579. doi:10.1016/j.sjbs.2020.05.025 CR - [19]. Ting, A. S. Y., & Chin, J. E. (2020). Biogenic synthesis of iron nanoparticles from apple peel extracts for decolorization of malachite green dye. Water, Air, & Soil Pollution, 231(6), 278. doi:10.1007/s11270-020 04658-z CR - [20]. Ildiz, N., Baldemir, A., Altinkaynak, C., Özdemir, N., Yilmaz, V., & Ocsoy, I. (2017). Self assembled snowball like hybrid nanostructures comprising Viburnum opulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme and Microbial Technology, 102, 60-66. doi: 10.1016/j.enzmictec.2017.04.003 CR - [21]. FR, W. C. (2012). Performance standards for antimicrobial susceptibility testing; twenty-second informational supplement. Clinical and Laboratory Standards Institute, 32, M100. CR - [22]. PA, W. (2002). Reference method for broth dilution antifungal susceptibility testing of yeasts, approved standard. CLSI document M27-A2. UR - https://doi.org/10.46309/biodicon.2025.1660959 L1 - https://dergipark.org.tr/en/download/article-file/4704637 ER -