TY - JOUR T1 - Prediction of prognosis in brain metastasis with artificial-intelligence-driven methods for whole brain radiotherapy TT - Beyin metastazında tüm beyin radyoterapisi sonrası yapay zeka destekli prognoz tahmini AU - Özkan, Emine Elif AU - Serel, Tekin Ahmet PY - 2025 DA - September Y2 - 2025 DO - 10.17826/cumj.1661241 JF - Cukurova Medical Journal JO - Cukurova Med J PB - Cukurova University WT - DergiPark SN - 2602-3032 SP - 661 EP - 672 VL - 50 IS - 3 LA - en AB - Purpose: Inferentially, 24%–45% of cancer patients develop brain metastases in their course. Individual survival estimation for these patients is crucial to identify the subset that may not benefit from whole-brain irradiation (WBI) due to a short survival time. This study aimed to identify variables and evaluate an artificial intelligence algorithm to determine which patients would benefit from WBI. Materials and Methods: The data of 345 patients with brain metastasis who were treated with 30 Gy in 10 fractions of WBI were retrospectively analyzed. In this cohort, a total of 15 clinical / laboratory factors are evaluated with 15 models of machine learning algorithms using Python 2.3, Pycaret library. Results: The Gradient Boosting Regressor was found to be the most accurate model, with a 0.68 R2 an R² value of 0.68, and a mean absolute error (MAE) of 12.90.The prediction error for the gradient Boosting Regressor was calculated as R2: 0.841. When the importance of features was investigated, time from diagnosis to metastasis was found to be the most important predictive variable for survival.Conclusion: The results of this study enable us to identify patients who may have an early death and provide a consequential decision guide in terms of whole-brain radiotherapy or additional labor-intensive techniques. KW - brain metastases KW - machine learning KW - prognosis KW - radiotherapy N2 - Amaç: Çıkarımsal olarak kanser hastalarının %24-45'i, seyirleri sırasında beyin metastazları geliştirir. Bu hastalar için bireysel sağkalım tahmini, kısa sağkalım süresi nedeniyle tüm beyin ışınlamasından (WBI) fayda görmeyebilecek hasta alt grubunu ayırt etmek için önemlidir. Bu çalışma, değişkenler üzerinde arama yapmayı ve WBI'dan fayda görecek hasta alt grubunu belirlemek için bir yapay zeka algoritmasını değerlendirmeyi amaçlamaktadır.Gereç ve Yöntem: 10 fraksiyonda 30 Gy WBI ile tedavi edilen beyin metastazı olan 345 hastanın verileri retrospektif olarak analiz edildi. Bu kohortta toplam 15 klinik/laboratuvar faktörü, Python 2.3, Pycaret kütüphanesi kullanılarak 15 makine öğrenme algoritması modeli ile değerlendirildi.Bulgular: Gradient Boosting Regressor'un 0,68 R2 değeri ve 12,90 ortalama mutlak değer (MAE) ile doğru modelleme olduğu bulundu. Gradient Boosting Regressor için tahmin hatası R2: 0,841 olarak hesaplandı. Özelliklerin önemi incelendiğinde, tanıdan metastaza kadar geçen sürenin sağ kalım için en önemli öngörücü değişken olduğu bulundu.Sonuç: Bu çalışmanın sonuçları erken ölüm riski olan hastaları belirlemeyi mümkün kılıyor ve tüm beyin radyoterapisi veya ek emek yoğun teknikler açısından sonuç odaklı bir karar kılavuzu sağlıyor. CR - Eichler AF, Loeffler JS. Multidisciplinary management of brain metastases. Oncologist. 2007;12:884–98. CR - Sacks P, Rahman M. Epidemiology of brain metastases. Neurosurg Clin N Am. 2020;31:481-88. CR - Hirose T, Deguchi S, Yasui K, Inoue M, Onoe T, Ogawa H et al. The indication of palliative whole-brain radiotherapy for patients with brain metastases: a simple prognostic scoring system in the era of stereotactic radiosurgery. BMC Cancer. 2024;24:940. CR - Cardinal T, Pangal D, Strickland BA, Newton P, Mahmoodifar S, Mason J et al. Anatomical and topographical variations in the distribution of brain metastases based on primary cancer origin and molecular subtypes: a systematic review. Neurooncol Adv. 2021;4:vdab170. CR - Nieder C, Norum J, Dalhaug A, Aandahl G, Pawinski A. Radiotherapy versus best supportive care in patients with brain metastases and adverse prognostic factors. Clin Exp Metastasis. 2013;30:723-29. CR - Li Z, Shen D, Zhang J, Zhang J, Yang F, Kong D et al. Relationship between WBRT total dose, intracranial tumor control, and overall survival in NSCLC patients with brain metastases - a single-center retrospective analysis. BMC Cancer. 2019;19:1104. CR - Rades D, Panzner A, Dziggel L, Haatanen T, Lohynska R, Schild SE. Dose-escalation of whole-brain radiotherapy for brain metastasis in patients with a favorable survival prognosis. Cancer. 2012;118:3852-59. CR - Sperduto PW, Chao ST, Sneed PK, Luo X, Suh J, Roberge D et al. Diagnosis-specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: a multi-institutional analysis of 4,259 patients. Int J Radiat Oncol Biol Phys. 2010;77:655-61. CR - Rades D, Dziggel L, Nagy V, Segedin B, Lohynska R, Veninga T et al. A new survival score for patients with brain metastases who received whole-brain radiotherapy (WBRT) alone. Radiother Oncol. 2013;108:123-27. CR - Kennedy, E.D, Simunovic M, Jhaveri K, Kirsch R, Brierley J, Drolet S et al. Safety and feasibility of using magnetic resonance imaging criteria to identify patients with “good prognosis” rectal cancer eligible for primary surgery: The phase 2 nonrandomized QuickSilver clinical trial. JAMA Oncol. 2019;5:961–66. CR - Wilensky, G.R. Bedside c omputer vision-moving artificial intelligence from driver assistance to patient safety. N. Engl.J.Med. 2018;378:1269–71. CR - Hana T, Tanaka S, Nejo T, Takahashi S, Kitagawa Y, Koike T, et al. Mining-Guided machine learning analyses revealed the latest trends in neuro-oncology. Cancers. 2019;11:178. CR - Ferroni P, Zanzotto FM, Riondino S, Scarpato N, Guadagni F, Roselli M. Breast cancer prognosis using a machine learning approach. Cancers. 2019;11:328. CR - Burki TK. Predicting lung cancer prognosis using machine learning. Lancet Oncol. 2016;17:e421. CR - Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015;138:8–17. CR - Lee YW, Cho HJ, Lee WH, Sonntag WE. Whole brain radiation-induced cognitive impairment: pathophysiological mechanisms and therapeutic targets. Biomol Ther (Seoul). 2012;20:357-70. CR - Marsh JC, Gielda BT, Herskovic AM, Abrams RA. Cognitive sparing during the administration of whole brain radiotherapy and prophylactic cranial irradiation: current concepts and approaches. J Oncol. 2010;2010:198208. CR - Pease NJ, Edwards A, Moss LJ. Effectiveness of whole brain radiotherapy in the treatment of brain metastases: a systematic review. Palliat Med. 2005;19:288–99. CR - Tsao MN, Rades D, Wirth A, Lo SS, Danielson BL, Gaspar LE et al. Radiotherapeutic and surgical management for newly diagnosed brain metastasis (es): An American Society for Radiation Oncology evidence-based guideline. Pract Radiat Oncol. 2012;2:210-225. CR - Rades D, Huttenlocher S, Dziggel L, Khoa MT, Van Thai P, Hornung D et al. A new tool predicting survival after radiosurgery alone for one or two cerebral metastases from lung cancer. Lung. 2015;193:299-302. CR - Rades D, Kieckebusch S, Lohynska R, Veninga T, Stalpers LJ, Dunst J et al. Reduction of overall treatment time in patients irradiated for more than three brain metastases. Int J Radiat Oncol Biol Phys. 2007;69:1509-13. CR - Gaspar L, Scott C, Rotman M, Asbell S, Phillips T, Wasserman T et al. Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys. 1997;37:745-51. CR - Videtic GM, Adelstein DJ, Mekhail TM, Rice TW, Stevens GH, Lee SY et al. Validation of the RTOG recursive partitioning analysis (RPA) classification for small-cell lung cancer-only brain metastases. Int J Radiat Oncol Biol Phys. 2007;67:240-43. CR - Rodrigues G, Warner A, Zindler J, Slotman B, Lagerwaard F. A clinical nomogram and recursive partitioning analysis to determine the risk of regional failure after radiosurgery alone for brain metastases. Radiother Oncol. 2014;111:52-8. CR - Sperduto PW, Berkey B, Gaspar LE, Mehta M, Curran W. A new prognostic index and comparison to three other indices for patients with brain metastases: an analysis of 1,960 patients in the RTOG database. Int J Radiat Oncol Biol Phys. 2008;70:510–514. CR - Nieder C, Mehta MP. Prognostic indices for brain metastases--usefulness and challenges. Radiat Oncol. 2009;4:10. CR - Buecker R, Hong ZY, Liu XM, Jaenke G, Lu P, Schaefer U. Risk factors to identify patients who may not benefit from whole brain irradiation for brain metastases - a single institution analysis. Radiat Oncol. 2019;14:41. CR - Bezjak A, Adam J, Panzarella T, Levin W, Barton R, Kirkbride P et al. Radiotherapy for brain metastases: defining palliative response. Radiother Oncol. 2001;61:71-76. CR - Moravan MJ, Fecci PE, Anders CK, Clarke JM, Salama AKS, Adamson JD et al.. Current multidisciplinary management of brain metastases. Cancer. 2020;126:1390-1406. CR - Gittleman H, Lim D, Kattan MW, Chakravarti A, Gilbert MR, Lassman AB et al. An independently validated nomogram for individualized estimation of survival among patients with newly diagnosed glioblastoma: NRG Oncology RTOG 0525 and 0825. Neuro Oncol. 2017;19:669-677. CR - Kent MS, Mandrekar SJ, Landreneau R, Nichols F, Foster NR, DiPetrillo TA et al. A Nomogram to predict recurrence and survival of high-risk patients undergoing sublobar resection for lung cancer: an analysis of a multicenter prospective study (ACOSOG Z4032). Ann Thorac Surg. 2016;102:239-46. CR - Barnholtz-Sloan JS, Yu C, Sloan AE, Vengoechea J, Wang M, Dignam JJ et al. A nomogram for individualized estimation of survival among patients with brain metastasis. Neuro Oncol. 2012;14:910-18. CR - Marko NF, Xu Z, Gao T, Kattan MW, Weil RJ. Predicting survival in women with breast cancer and brain metastasis: a nomogram outperforms current survival prediction models. Cancer. 2012;118:3749-57. CR - Ahn HK, Lee S, Park YH, Sohn JH, Jo JC, Ahn JH et al. Prediction of outcomes for patients with brain parenchymal metastases from breast cancer (BC): a new BC-specific prognostic model and a nomogram. Neuro Oncol. 2012;14:1105-13. CR - Pietrantonio F, Aprile G, Rimassa L, Franco P, Lonardi S, Cremolini C, et al. A new nomogram for estimating survival in patients with brain metastases secondary to colorectal cancer. Radiother Oncol. 2015;117:315-21. CR - Ayala-Peacock DN, Attia A, Braunstein SE, Ahluwalia MS, Hepel J, Chung C, et al. Prediction of new brain metastases after radiosurgery: validation and analysis of performance of a multi-institutional nomogram. J Neurooncol. 2017;135:403-11. CR - Zindler JD, Jochems A, Lagerwaard FJ, Beumer R, Troost EGC, Eekers DBP et al. Individualized early death and long-term survival prediction after stereotactic radiosurgery for brain metastases of non-small cell lung cancer: Two externally validated nomograms. Radiother Oncol. 2017;123:189-94. CR - Huang S, Yang J, Fong S, Zhao Q. Mining prognosis index of brain metastases using artificial intelligence. Cancers (Basel). 2019;11:1140. CR - Oermann EK, Kress MA, Collins BT, Collins SP, Morris D, Ahalt SC, et al. Predicting survival in patients with brain metastases treated with radiosurgery using artificial neural networks. Neurosurgery. 2013;72:944-51 CR - Habibi MA, Rashidi F, Habibzadeh A, Mehrtabar E, Arshadi MR, Mirjani MS. Prediction of the treatment response and local failure of patients with brain metastasis treated with stereotactic radiosurgery using machine learning: A systematic review and meta-analysis. Neurosurg Rev. 2024;47:199. CR - Munai E, Zeng S, Yuan Z, Yang D, Jiang Y, Wang Q et al. Machine learning-based prediction model for brain metastasis in patients with extensive-stage small cell lung cancer. Sci Rep. 2024;14:28790. CR - Palácová M, Svobod, M, Fabian P, Ondrová B, Grell P, Jana G et al. Tumor phenotype and characteristics of metastatic brain involvement in breast cancer patients: potential clinical consequences, ASCO annual meeting proceedings 2009. J Clin Oncol. 2009;27:1026. CR - Scoccianti S, Detti B, Cipressi S, Iannalfi A, Franzese C, Biti G. Changes in neurocognitive functioning and quality of life in adult patients with brain tumors treated with radiotherapy. J Neurooncol. 2012;108:291–308. CR - Monje ML, Palmer T. Radiation injury and neurogenesis. Curr Opin Neurol. 2003;16:129–34 UR - https://doi.org/10.17826/cumj.1661241 L1 - https://dergipark.org.tr/en/download/article-file/4705964 ER -