TY - JOUR T1 - YAPAY ZEKA TEMELLİ ÖĞRENME YÖNTEMLERİNİN FİNANS ALANINDA KULLANIMI: BİBLİYOMETRİK BİR ANALİZ TT - USING OF ARTIFICIAL INTELLIGENCE-BASED LEARNING METHODS IN FINANCE: A BIBLIOMETRIC ANALYSIS AU - Özbek, Gökhan Berk AU - Bayram, Erdi PY - 2025 DA - July Y2 - 2025 DO - 10.35379/cusosbil.1662365 JF - Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi PB - Cukurova University WT - DergiPark SN - 1304-8899 SP - 303 EP - 321 VL - 34 IS - Uygarlığın Dönüşümü: Yapay Zekâ LA - tr AB - Çalışmada Makine Öğrenimi, Derin Öğrenme ve Pekiştirmeli Öğrenme ile ilgili finans alanındaki çalışmaların bibliyometrik incelemesi yapılmıştır. 2001-2025 periyodunu kapsayan araştırmada, Web of Science ve Scopus veri tabanlarında indekslenen, İngilizce yazılmış, yalnızca makale türündeki çalışmalar analiz edilmiştir. Her iki veri tabanındaki çalışmalar Rstudio ortamında özel bir kod dizini kullanılarak birleştirilmiş, tekrarlayanlar ayıklanmış ve tek bir veri setiyle çalışılmıştır. Çalışmalar yazar, dergi, anahtar kelimeler, tematik konular, atıf sayıları ve yazar ülkeleri bağlamında bibliyografik olarak araştırılmıştır. Çalışmaların görsel analizinde ise Biblioshiny programından yararlanılmıştır. Bu araştırmanın sonuçları olarak ilgili alandaki yayın sayısında özellikle 2018 sonrası ciddi bir artış olduğu izlenmektedir. Pay senedi fiyat tahminlemesi, volatilite öngörümlemesi, duygu analizi, sinir ağları ve optimizasyon gibi konuların ilgili alandaki temel temaları oluşturduğu tespit edilmiştir. En fazla yayının Expert Systems with Applications dergisinde yer aldığı ve Çin Halk Cumhuriyeti’nden araştırmacıların %29,8’lik bir oranla ilgili alanlarda en yüksek yayın üretme oranına sahip olduğu görülmektedir. Çalışılan veri setinde yer alan çalışmaların başlıklarında geçen en yaygın kelimeler ise pay senedi, öğrenme, tahmin, piyasa, öngörümleme, analiz, duygu, alım-satım ve portföydür. Araştırmanın yapay zekanın ilgili alt disiplinlerine dayalı modellerin finans literatürü açısından mevcut durumunu, etkisini ve potansiyel araştırma konularını ortaya koyması bakımından önemli olduğu olduğu düşünülmektedir. KW - Makine Öğrenimi KW - Derin Öğrenme KW - Pekiştirmeli Öğrenme KW - Bibliyometrik Analiz KW - Kantitatif Finans N2 - The study presents a bibliometric analysis of research in finance focusing on machine learning, deep learning, and reinforcement learning. The analysis covers the period from 2001 to 2025 and includes only articles written in English and indexed in the Web of Science and Scopus databases. Using custom code in Rstudio environment, articles from both databases were merged, duplicates were removed, and a final dataset was prepared for analysis.The studies were examined bibliographically in terms of authors, journals, keywords, thematic areas, citation counts, and author affiliations. For visual analysis, the Biblioshiny software was used. The findings reveal a significant increase in the number of publications in this field, particularly after 2018. Key research themes identified include stock price prediction, volatility forecasting, sentiment analysis, neural networks, and optimization. The Journal Expert Systems with Applications was found to have the highest number of publications in the field. Researchers from the People’s Republic of China contributed the largest share, accounting for 29.8% of all publications. The most frequently occurring terms in article titles include stock, learning, prediction, market, forecasting, analysis, sentiment, trading, and portfolio. This study is considered important for identifying the current state, academic impact, and future research directions of AI-based methods and models within the finance literature. CR - Akay, E. C., Soydan, N. T. Y. ve Gacar, B. K. (2020). Makine öğrenmesi ve ekonomi: Bibliyometrik analiz. PressAcademia Procedia, 12(1), 104-109. https://doi.org/10.17261/Pressacademia.2020.1367 CR - Aria, M. ve Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007 CR - Arslankaya, S. ve Toprak, Ş. (2021). Makine öğrenmesi ve derin öğrenme algoritmalarını kullanarak hisse senedi fiyat tahmini. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 13(1), 178-192. https://doi.org/10.29137/umagd.771671 CR - Aslancı, S. (2022). Araştırma sorgulamaya dayalı öğrenme: bibliyometrik bir analiz. Scientific Educational Studies, 6(1), 1-25. https://doi.org/10.1016/j.joi.2017.08.007 CR - Aydın, N. (2024). Bibliyometrik analiz nasıl yapılır: Genel bir bakış. Balkan ve Yakın Doğu Sosyal Bilimler Dergisi. 19(Özel Sayı), 153-160. CR - Baek, S., Mohanty, S. K., ve Glambosky, M. (2020). COVID-19 and stock market volatility: An industry level analysis. Finance Research Letters, 37, 101748. https://doi.org/10.1016/j.frl.2020.101748 CR - Baek, Y. ve Kim, H. Y. (2018). ModAugNet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module. Expert Systems with Applications, 113, 457-480. https://doi.org/10.1016/j.eswa.2018.07.019 CR - Borovkova, S. ve Tsiamas, I. (2019). An ensemble of LSTM neural networks for high‐frequency stock market classification. Journal of Forecasting, 38(6), 600-619. https://doi.org/10.1002/for.2585 CR - Brock, W. A., Hommes, C. H., ve Wagener, F. O. (2009). More hedging instruments may destabilize markets. Journal of Economic Dynamics and Control, 33(11), 1912-1928. https://doi.org/10.1016/j.jedc.2009.05.004 CR - Bucci, A. (2020). Realized volatility forecasting with neural networks. Journal of Financial Econometrics, 18(3), 502-531. https://doi.org/10.1093/jjfinec/nbaa008 CR - Cao, J., Li, Z. ve Li, J. (2019). Financial time series forecasting model based on CEEMDAN and LSTM. Physica A: Statistical Mechanics and Its Applications, 519, 127-139. https://doi.org/10.1016/j.physa.2018.11.061 CR - Carmona, P., Climent, F., ve Momparler, A. (2019). Predicting failure in the US banking sector: An extreme gradient boosting approach. International Review of Economics & Finance, 61, 304-323. https://doi.org/10.1016/j.iref.2018.03.008 CR - Ceyhan, İ. F. (2023). Finans alanında makine ve derin öğrenmenin kullanılması: Lisansüstü tezlerde sistematik literatür taraması. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 12(3), 2187-2209. https://doi.org/10.15869/itobiad.1329889 CR - Charpentier, A., Elie, R. ve Remlinger, C. (2021). Reinforcement learning in economics and finance. Computational Economics, 62, 425-462. https://doi.org/10.1007/s10614-021-10119-4 CR - Chen, S. ve Ge, L. (2019). Exploring the attention mechanism in LSTM-based Hong Kong stock price movement prediction. Quantitative Finance, 19(9), 1507-1515. https://doi.org/10.1080/14697688.2019.1622287 CR - Chen, W., Zhang, H., Mehlawat, M. K. ve Jia, L. (2021). Mean–variance portfolio optimization using machine learning-based stock price prediction. Applied Soft Computing, 100, 106943. https://doi.org/10.1016/j.asoc.2020.106943 CR - Cheng, C., Sa-Ngasoongsong, A., Beyca, O., Le, T., Yang, H., Kong, Z., ve Bukkapatnam, S. T. (2015). Time series forecasting for nonlinear and non-stationary processes: a review and comparative study. Iie Transactions, 47(10), 1053-1071. https://doi.org/10.1080/0740817X.2014.999180 CR - Chong, E., Han, C. ve Park, F. C. (2017). Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies. Expert Systems with Applications, 83, 187-205. https://doi.org/10.1016/j.eswa.2017.04.030 CR - Dargan, S., Kumar, M., Ayyagari, M. R. ve Kumar, G. (2020). A survey of deep learning and its applications: A new paradigm to machine learning. Archives of Computational Methods in Engineering, 27(4), 1071-1092. https://doi.org/10.1007/s11831-019-09344-w CR - De Spiegeleer, J., Madan, D. B., Reyners, S. ve Schoutens, W. (2018). Machine learning for quantitative finance: fast derivative pricing, hedging and fitting. Quantitative Finance, 18(10), 1635-1643. https://doi.org/10.1080/14697688.2018.1495335 CR - Dirik, D., Erhan, T. ve Eryılmaz, İ. (2024). Yapay zeka ve örgüt temelli araştırmaların potansiyel eğilimleri üzerine bibliyometrik bir analiz. Bulletin of Economic Theory and Analysis, 9(3), 669-698. https://doi.org/10.25229/beta.1487924 CR - Fischer, T. ve Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654-669. https://doi.org/10.1016/j.ejor.2017.11.054 CR - Gogas, P. ve Papadimitriou, T. (2021). Machine learning in economics and finance. Computational Economics, 57, 1-4. https://doi.org/10.1007/s10614-021-10094-w CR - Gu, S., Kelly, B., ve Xiu, D. (2020). Empirical asset pricing via machine learning. The Review of Financial Studies, 33(5), 2223-2273. https://doi.org/10.1093/rfs/hhaa009 CR - Hambly, B., Xu, R., ve Yang, H. (2023). Recent advances in reinforcement learning in finance. Mathematical Finance, 33(3), 437-503. https://doi.org/10.1111/mafi.12382 CR - Helmbold, D. P., Schapire, R. E., Singer, Y., ve Warmuth, M. K. (1998). On‐line portfolio selection using multiplicative updates. Mathematical Finance, 8(4), 325-347. https://doi.org/10.1111/1467-9965.00058 CR - Hoang, D. ve Wiegratz, K. (2023). Machine learning methods in finance: Recent applications and prospects. European Financial Management, 29(5), 1657-1701. https://doi.org/10.1111/eufm.12408 CR - Hoseinzade, E. ve Haratizadeh, S. (2019). CNNpred: CNN-based stock market prediction using a diverse set of variables. Expert Systems with Applications, 129, 273-285. https://doi.org/10.1016/j.eswa.2019.03.029 CR - Huang, J., Chai, J., ve Cho, S. (2020). Deep learning in finance and banking: A literature review and classification. Frontiers of Business Research in China, 14(1), 13. https://doi.org/10.1186/s11782-020-00082-6 CR - Kim, H. Y. ve Won, C. H. (2018). Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models. Expert Systems with Applications, 103, 25-37. https://doi.org/10.1016/j.eswa.2018.03.002 CR - Krauss, C., Do, X. A. ve Huck, N. (2017). Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. European Journal of Operational Research, 259(2), 689-702. https://doi.org/10.1016/j.ejor.2016.10.031 CR - Leippold, M., Wang, Q., ve Zhou, W. (2022). Machine learning in the Chinese stock market. Journal of Financial Economics, 145(2), 64-82. https://doi.org/10.1016/j.jfineco.2021.08.017 CR - Li, X., Shang, W. ve Wang, S. (2019). Text-based crude oil price forecasting: A deep learning approach. International Journal of Forecasting, 35(4), 1548-1560. https://doi.org/10.1016/j.ijforecast.2018.07.006 CR - Lin, Y., Yan, Y., Xu, J., Liao, Y., ve Ma, F. (2021). Forecasting stock index price using the CEEMDAN-LSTM model. The North American Journal of Economics and Finance, 57, 101421. https://doi.org/10.1016/j.najef.2021.101421 Manela, A. ve Moreira, A. (2017). News implied volatility and disaster concerns. Journal of Financial Economics, 123(1), 137-162. https://doi.org/10.1016/j.jfineco.2016.01.032 CR - Manogna, R. L. ve Anand, A. (2024). A bibliometric analysis on the application of deep learning in finance: Status, development and future directions. Kybernetes, 53(12), 5951-5971. https://doi.org/10.1108/K-04-2023-0637 CR - Meng, C., Chen, C., Xu, H. ve Li, T. (2024). Asset pricing and portfolio investment management using machine learning: Research trend analysis using scientometrics. Economics, 18(1), 20220108. https://doi.org/10.1515/econ-2022-0108 CR - Moral-Munoz, J. A., Herrera-Viedma, E., Santisteban-Espejo, A. ve Cobo, M. J. (2020). Software tools for conducting bibliometric analysis in science: An up-to-date review. El Profesional de La Información, 29(1). https://doi.org/10.3145/epi.2020.ene.03 CR - Nikou, M., Mansourfar, G. ve Bagherzadeh, J. (2019). Stock price prediction using DEEP learning algorithm and its comparison with machine learning algorithms. Intelligent Systems in Accounting, Finance and Management, 26(4), 164-174. https://doi.org/10.1002/isaf.1459 CR - Oliveira, N., Cortez, P. ve Areal, N. (2017). The impact of microblogging data for stock market prediction: Using Twitter to predict returns, volatility, trading volume and survey sentiment indices. Expert Systems with Applications, 73, 125-144. https://doi.org/10.1016/j.eswa.2016.12.036 CR - Patel, J., Shah, S., Thakkar, P. ve Kotecha, K. (2015a). Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert Systems with Applications, 42(1), 259-268. https://doi.org/10.1016/j.eswa.2014.07.040 CR - Patel, J., Shah, S., Thakkar, P. ve Kotecha, K. (2015b). Predicting stock market index using fusion of machine learning techniques. Expert Systems with Applications, 42(4), 2162-2172. https://doi.org/10.1016/j.eswa.2014.10.031 CR - Rasekhschaffe, K. C. ve Jones, R. C. (2019). Machine learning for stock selection. Financial Analysts Journal, 75(3), 70-88. https://doi.org/10.1080/0015198X.2019.1596678 CR - Renault, T. (2017). Intraday online investor sentiment and return patterns in the US stock market. Journal of Banking & Finance, 84, 25-40. https://doi.org/10.1016/j.jbankfin.2017.07.002 CR - Samitas, A., Kampouris, E. ve Kenourgios, D. (2020). Machine learning as an early warning system to predict financial crisis. International Review of Financial Analysis, 71, 101507. https://doi.org/10.1016/j.irfa.2020.101507 CR - Sapankevych, N. ve Sankar, R. (2009). Time series prediction using support vector machines: A survey. IEEE Computational Intelligence Magazine, 4(2), 24-38. https://doi.org/10.1109/MCI.2009.932254 CR - Schumaker, R. P. ve Chen, H. (2009). Textual analysis of stock market prediction using breaking financial news: The AZFin text system. ACM Transactions on Information Systems, 27(2), 1-19. https://doi.org/10.1145/1462198.1462204 CR - Sirignano, J. ve Cont, R. (2021). Universal features of price formation in financial markets: perspectives from deep learning. G. Creamer, G. Kazantsev ve T. Aste (Eds.), Machine Learning and AI in Finance (s. 5-15). Routledge. CR - White, H. (1988, Temmuz). Economic prediction using neural networks: The case of IBM daily stock returns. [Konferans sunumu özeti]. IEEE 1988 International Conference on Neural Networks, San Diego, CA, Amerika Birleşik Devletleri CR - Yürük, M. F. ve Ekşi, İ. H. (2019). Yapay zeka yöntemleri ile işletmelerin finansal başarısızlığının tahmin edilmesi: BİST imalat sektörü uygulaması. Mukaddime, 10(1), 393-422. https://doi.org/10.19059/mukaddime.533151 CR - Zhong, X. ve Enke, D. (2019). Predicting the daily return direction of the stock market using hybrid machine learning algorithms. Financial Innovation, 5(1), 1-20. https://doi.org/10.1186/s40854-019-0138-0 UR - https://doi.org/10.35379/cusosbil.1662365 L1 - https://dergipark.org.tr/en/download/article-file/4710804 ER -