TY - JOUR T1 - An Investigation of Fractional-Order Respiratory System Dynamics AU - Gökgöz, Nurgül PY - 2025 DA - May Y2 - 2025 JF - Cankaya University Journal of Science and Engineering JO - CUJSE PB - Cankaya University WT - DergiPark SN - 2564-7954 SP - 33 EP - 41 VL - 22 IS - 1 LA - en AB - In order to represent a respiratory system, a linear model has been applied and for comparison, the same linear model has been represented in terms of the fractional operators. In order to obtain fractional order simulations, a fractional order modeling toolbox, FOMCON, is used. By this manner, integer order and fractional order modeling performances are compared. For different parameter values that correspond to different scenarios, corresponding simulations are obtained and a comparison of parameter values and the integer and fractional order models are investigated. Then, a static model is used and simulated for different parameter values. Also, a stability analysis is implemented by investigating the bode plots of the static model. KW - Feedback circuits KW - RLC circuits KW - Respiratory system modeling KW - Mathematical model KW - Biomedical instrumentation KW - Stability analysis CR - M. Khoo, Physiological Control Systems: Analysis, Simulation, and Estimation. Wiley-IEEE Press, 2nd Edition, 2018. CR - E. P. Aleksei Tepljakov and J. Belikov, “Fomcon: a matlab toolbox for fractional-order system identification and control,” Int. J. Microelectron. Comput. Sci. , vol. 2, no. 2, pp. 51–62, Jan. 2011. CR - Y. Luchko and R. Gorenflo, “An operational method for solving fractional differential equations with the caputo derivatives,” Acta Math Vietnam, vol. 24, no. 2, pp. 207–233, Jan. 1999. CR - I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, 1999. CR - K.S. Nisar, S. Ahmad, A. Ullah, K. Shah, H. Alrabaiah and M. Arfan, “Mathematical analysis of sird model of covid-19 with caputo fractional derivative based on real data,” Results in Physics, vol. 21, Dec. 2021, doi: 10.1016/j.rinp.2020.103772. CR - D. Yaro, W. O. Apeanti, A. Worlanyo and D. Lu, “Analysis and optimal control of fractional-order transmission of a respiratory epidemic model,” Int. J. Appl. Comput. Math, vol. 5, no. 116, Jul. 2019, doi:10.1007/s4081901906997. CR - M. Awadalla, J. Alahmadi, K. R. Cheneke and S. Qureshi, “Fractional optimal control model and bifurcation analysis of human syncytial respiratory virus transmission dynamics,” Fractal Fract., vol. 8, no. 44, Jan. 2024, doi: 10.3390/fractalfract8010044. CR - F. A. dAlegria Tuza, P. M. de Sa, H. A. Castro, A. J. Lopes and P. L. de Melo, “Combined forced oscillation and fractional-order modeling in patients with work-related asthma: a case–control study analyzing respiratory biomechanics and diagnostic accuracy,” Biomed. Eng. Online, vol. 19, no. 93, Dec. 2020, doi: 10.1186/s12938 020-00836-6. CR - C. M. Ionescu, “Fractional order models of the human respiratory system”. Ph.D. dissertation, Ghent University, Ghent, Belgium, January 2009. CR - E. Saatci and E. Saatci, “State-space analysis of fractional-order respiratory system models,” Biomed. Signal Process. Control, vol. 57, no. 101820, Mar. 2020, doi: 10.1016/j.bspc.2019.101820. CR - J. C. Smith, A. P. Abdala, A. Borgmann, I.A. Rybak and J. F. Paton, “Brainstem respiratory networks: building blocks and microcircuits,” Trends Neurosci., Vol. 36, no.3, pp. 152–162, Mar. 2013, doi: 10.1016/j.tins.2012.11.004. CR - A. Ben-Tal, “Simplified models for gas exchange in the human lungs,” J. Theor. Biol., Vol. 238, no.2, pp. 474–495, 2006, doi:10.1016/j.jtbi.2005.06.005. CR - B. G. Lindsey, I. A. Rybak and J.C. Smith, “Computational models and emergent properties of respiratory neural networks,” Compr. Physiol., Vol. 2, no.3, pp.1619–1670, 2012, doi:10.1002/cphy.c110016. CR - R. Gutiérrez, J. M. Rosario and J. A. T. Machado, "Fractional order calculus: basic concepts and engineering applications," Math. Probl. Eng., Volume 2010, Article ID 375858, May 2010, doi: 10.1155/2010/375858. CR - B. Quatember, M. Mayr, W. Recheis, “Simulation of Flow Patterns Within the Human Respiratory System.” AIP Conf. Proc. Vol. 1048, no.1, pp.954–957, Sept. 2008, doi: 10.1063/1.2991094. CR - A. Albanese, L. Cheng, M. Ursino, and N. W. Chbat, “An integrated mathematical model of the human cardiopulmonary system: model development,” Am. J. Physiol. Heart Circ. Physiol., Vol. 310, no.7, H899-H921, Dec. 2015 , doi: 10.1152/ajpheart.00230.2014. CR - Swan, A., Hunter, P., Tawhai, M., “Pulmonary Gas Exchange in Anatomically-Based Models of the Lung” in Poulin, M.J., Wilson, R.J.A. (eds) Integration in Respiratory Control. Advances in Experimental Medicine and Biology, vol 605. Springer, New York, NY., 2008. CR - W. R. Mower, C. Sachs, E. L. Nicklin, P. Safa, and L. J. Baraff, “A comparison of pulse oximetry and respiratory rate in patient screening,” Respir. Med., Vol. 90, no. 10, pp.593–599; Nov. 1996, doi: 10.1016/S09546111(96)900177. CR - C. Chourpiliadis and A. Bhardwaj, Physiology, Respiratory Rate. [Updated 2022 Sep 12]. In: StatPearls[Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available: https://www.ncbi.nlm.nih.gov/books/NBK537306/ CR - C. S. Lessard, Basic Feedback Controls in Biomedicine, Springer Cham, 2009. UR - https://dergipark.org.tr/en/pub/cankujse/issue//1665734 L1 - https://dergipark.org.tr/en/download/article-file/4726136 ER -