TY - JOUR T1 - Spanelastic as a vesicular nanocarrier for transdermal drug delivery system: Preparation, characterization and bioactive loading AU - Adulhussein, Yassir Mohamed AU - Rajab, Nawal Ayash AU - Kadhim, Enas Jawad AU - Abdulhamid, Shaimaa Nazar AU - Al-ani, Enas PY - 2025 DA - April Y2 - 2024 DO - 10.12991/jrespharm.1666368 JF - Journal of Research in Pharmacy JO - J. Res. Pharm. PB - Marmara University WT - DergiPark SN - 2630-6344 SP - 833 EP - 840 VL - 29 IS - 2 LA - en AB - Spanlastic is a novel surfactant-based elastic nanovesicle delivery system that has been shown to deliver many different types of drugs. The present review aimed to illustrate the structure, composition, evaluation and discuss some bioactive compounds that can be delivered by spanlastics. Spanlastics are composed of a non-ionic surfactant and an edge activator, which gives them their elasticity. This elasticity allows spanlastics to deform and squeeze through the skin pores, making them ideal for transdermal delivery. Spanlastics have also been shown to be effective in delivering drugs to the eye, buccal mucosa, and other tissues. Spanlastics have several advantages over other drug delivery systems. They are non-immunogenic, biodegradable, and chemically stable. They are also more elastic than liposomes, which makes them more effective at penetrating biological membranes. In addition, spanlastics can be formulated to target specific tissues, which can improve the therapeutic efficacy of the drug. Spanlastics are a promising new drug delivery system with a wide range of potential applications. They are currently being investigated for the treatment of a wide range of diseases, including cancer, inflammation, and infectious diseases. Finally, this review leads to a conclude that Spanelastic can be used as a good Vesicular Nanocarrier for transdermal drug delivery system. KW - Spanelastic KW - vesicular nanocarrier KW - transdermal drug delivery KW - olive tree KW - curcumin KW - green tea CR - [1] Ahmed Saeed Al-Japairai K, Mahmood S, Hamed Almurisi S, Reddy Venugopal J, Rebhi Hilles A, Azmana M, Raman S. Current trends in polymer microneedle for transdermal drug delivery. Int J Pharm. 2020;587:119673. https://doi.org/10.1016%2Fj.ijpharm.2020.119673 CR - [2] Phatale V, Vaiphei KK, Jha S, Patil D, Agrawal M, Alexander A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J Control Release. 2022;351:361–380. https://doi.org/10.1016/j.jconrel.2022.09.025 CR - [3] Verma S, Utreja P. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asian J Pharm Sci.2019;14:117–129. https://doi.org/10.1016/j.ajps.2018.05.007 CR - [4] Abdelbari MA, El-Mancy SS, Elshafeey AH, Abdelbary AA. Implementing spanlastics for improving the ocular delivery of clotrimazole: In vitro characterization, ex vivo permeability, microbiological assessment and in vivo safety study. Int J Nanomedicine. 2021;16:6249–6261. https://doi.org/10.2147/ijn.s319348 CR - [5] Elmowafy E, El-Gogary RI, Ragai MH, Nasr M. Novel antipsoriatic fluidized spanlastic nanovesicles: In vitro physicochemical characterization, ex vivo cutaneous retention and exploratory clinical therapeutic efficacy. Int J Pharm. 2019;568:118556. https://doi.org/10.1016/j.ijpharm.2019.118556 CR - [6] Liu Y, Wang Y, Yang J, Zhang H, Gan L. Cationized hyaluronic acid coated spanlastics for cyclosporine A ocular delivery: Prolonged ocular retention, enhanced corneal permeation and improved tear production. Int J Pharm. 2019;565:133–142. https://doi.org/10.1016/j.ijpharm.2019.05.018 CR - [7] Lalu L, Tambe V, Pradhan D, Nayak K, Bagchi S, Maheshwari R, Kalia K, Tekade RK. Novel nanosystems for the treatment of ocular inflammation: Current paradigms and future research directions. J Control Release. 2017;268:19-39. https://doi.org/10.1016/j.jconrel.2017.07.035 CR - [8] Abdelmonem R, El-Enin HAA, Abdelkader G, Abdel-Hakeem M. Formulation and characterization of lamotrigine nasal insert targeted brain for enhanced epilepsy treatment. Drug Deliv. 2023;30:2163321. https://doi.org/10.1080%2F10717544.2022.2163321 CR - [9] El Menshawe SF, Nafady MM, Aboud HM, Kharshoum RM, Elkelawy AMMH, Hamad DS. Transdermal delivery of fluvastatin sodium via tailored spanlastic nanovesicles: mitigated Freund’s adjuvant-induced rheumatoid arthritis in rats through suppressing p38 MAPK signaling pathway. Drug Deliv. 2019;26:1140–1154. https://doi.org/10.1080%2F10717544.2019.1686087 CR - [10] Ferreira MD, Duarte J, Veiga F, Paiva-Santos AC, Pires PC. Nanosystems for brain targeting of antipsychotic drugs: An update on the most promising nanocarriers for ıncreased bioavailability and therapeutic efficacy. Pharmaceutics. 2023;15(2):678. https://doi.org/10.3390%2Fpharmaceutics15020678 CR - [11] Ibrahim SS, Abd-Allah H. Spanlastic nanovesicles for enhanced ocular delivery of vanillic acid: design, in vitro characterization, and in vivo anti-inflammatory evaluation. Int J Pharm. 2022;625:122068. https://doi.org/10.1016/j.ijpharm.2022.122068 CR - [12] Agha OA, Girgis GNS, El-Sokkary MMA, Soliman OAE-A. Spanlastic-laden in situ gel as a promising approach for ocular delivery of Levofloxacin: In-vitro characterization, microbiological assessment, corneal permeability and in-vivo study. Int J Pharm. 2023;6:100201. https://doi.org/10.1016/j.ijpx.2023.100201 CR - [13] Ansari MD, Saifi Z, Pandit J, Khan I, Solanki P, Sultana Y, Aqil M. Spanlastics a novel nanovesicular carrier: Its potential application and emerging trends in therapeutic delivery. AAPS PharmSciTech. 2022;23(4):112.https://doi.org/10.1208/s12249-022-02217-9 CR - [14] Gaafar PME, Abdallah OY, Farid RM, Abdelkader H. Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone. J Liposome Res. 2014;24:204–215. https://doi.org/10.3109/08982104.2014.881850 CR - [15] Ali MM, Shoukri RA, Yousry C. Thin film hydration versus modified spraying technique to fabricate intranasal spanlastic nanovesicles for rasagiline mesylate brain delivery: Characterization, statistical optimization, and in vivo pharmacokinetic evaluation. Drug Deliv Transl Res. 2023;13:1153–1168. https://doi.org/10.1007/s13346-022-01285-5 CR - [16] Elsaied EH, Dawaba HM, Ibrahim ESA, Afouna MI. Effect of Pegylated Edge activator on Span 60 based-nanovesicles: Comparision between MYRJ 52 and MYRJ 59. Univers J Pharm Res. 2019; 4(4):1-8 https://doi.org/10.22270/ujpr.v4i4.290 CR - [17] Mahmoud MO, Aboud HM, Hassan AH, Ali AA, Johnston TP. Transdermal delivery of atorvastatin calcium from novel nanovesicular systems using polyethylene glycol fatty acid esters: Ameliorated effect without liver toxicity in poloxamer 407-induced hyperlipidemic rats. J Control Release. 2017;254:10-22. https://doi.org/10.1016/j.jconrel.2017.03.039 CR - [18] Fahmy AM, El-Setouhy DA, Ibrahim AB, Habib BA, Tayel SA, Bayoumi NA. Penetration enhancer-containing spanlastics (PECSs) for transdermal delivery of haloperidol: In vitro characterization, ex vivo permeation and in vivo biodistribution studies. Drug Deliv. 2018;25:12–22. https://doi.org/10.1080/10717544.2017.1410262 CR - [19] Esquerdo VM, Dotto GL, Pinto LAA. Preparation of nanoemulsions containing unsaturated fatty acid concentrate-chitosan capsules. J Colloid Interface Sci. 2015;445:137–142. https://doi.org/10.1016/j.jcis.2014.12.094 CR - [20] ElMeshad AN, Mohsen AM. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv. 2016;23:2115–2123. https://doi.org/10.3109/10717544.2014.942811 CR - [21] Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47:3–19. https://doi.org/10.1016/s0169-409x(00)00118-6 CR - [22] Khallaf RA, Aboud HM, Sayed OM. Surface modified niosomes of olanzapine for brain targeting via nasal route; preparation, optimization, and in vivo evaluation. J Liposome Res. 2020;30:163–173. https://doi.org/10.1080/08982104.2019.1610435 CR - [23] Shamma RN, Sayed S, Sabry NA, El-Samanoudy SI. Enhanced skin targeting of retinoic acid spanlastics: in vitro characterization and clinical evaluation in acne patients. J Liposome Res. 2019;29:283–290. https://doi.org/10.1080/08982104.2018.1552706 CR - [24] Dora CP, Singh SK, Kumar S, Datusalia AK, Deep A. Development and characterization of nanoparticles of glibenclamide by solvent displacement method. Acta Pol Pharm. 2010;67:283–290. CR - [25] Elsherif NI, Shamma RN, Abdelbary G. Terbinafine hydrochloride trans-ungual delivery via nanovesicular systems: In vitro characterization and ex vivo evaluation. AAPS PharmSciTech. 2017;18:551–562. https://doi.org/10.1208/s12249-016-0528-9 CR - [26] Mekkawy AI, Eleraky NE, Soliman GM, Elnaggar MG, Elnaggar MG. Combinatorial therapy of letrozole- and quercetin-loaded spanlastics for enhanced cytotoxicity against MCF-7 breast cancer cells. Pharmaceutics. 2022;14(8):1727. https://doi.org/10.3390/pharmaceutics14081727. CR - [27] Fahmy AM, El-Setouhy DA, Habib BA, Tayel SA. Enhancement of transdermal delivery of haloperidol via spanlastic dispersions: Entrapment efficiency vs. particle size. AAPS PharmSciTech. 2019;20(3):95. https://doi.org/10.1208/s12249-019-1306-2 CR - [28] Alaaeldin E, Abou-Taleb HA, Mohamad SA, Elrehany M, Gaber SS, Mansour HF. Topical nano-vesicular spanlastics of celecoxib: Enhanced anti-inflammatory effect and down-regulation of TNF-α, NF-кB and COX-2 in complete Freund’s Adjuvant-Induced Arthritis model in rats. Int J Nanomedicine. 2021;16:133–145. https://doi.org/10.2147/ijn.s289828 CR - [29] Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Duodenum-triggered delivery of pravastatin sodium via enteric surface-coated nanovesicular spanlastic dispersions: Development, characterization and pharmacokinetic assessments. Int J Pharm. 2015;483:77–88. https://doi.org/10.1016/j.ijpharm.2015.02.012 CR - [30] Gupta I, Adin SN, Rashid MA, Alhamhoom Y, Aqil M, Mujeeb M. Spanlastics as a potential approach for enhancing the nose-to-brain delivery of piperine: In vitro prospect and ın vivo therapeutic efficacy for the management of epilepsy. Pharmaceutics. 2023;15(2):641. https://doi.org/10.3390/pharmaceutics15020641 CR - [31] Kalua CM, Allen MS, Bedgood DR, Bishop AG, Prenzler PD, Robards K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007;100:273–286. https://doi.org/10.1016/j.foodchem.2005.09.059 CR - [32] El SN, Karakaya S. Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr Rev. 2009;67:632–638. https://doi.org/10.1111/j.1753-4887.2009.00248.x CR - [33] Kanakis P, Termentzi A, Michel T, Gikas E, Halabalaki M, Skaltsounis A-L. From olive drupes to olive oil. An HPLC-orbitrap-based qualitative and quantitative exploration of olive key metabolites. Planta Med. 2013;79:1576–1587. https://doi.org/10.1055/s-0033-1350823 CR - [34] Hashmi MA, Khan A, Hanif M, Farooq U, Perveen S. Traditional uses, phytochemistry, and pharmacology of Olea europaea (Olive). Evid Based Complement Alternat Med. 2015;2015:541591. https://doi.org/10.1155%2F2015%2F541591 CR - [35] Alnusaire TS, Sayed AM, Elmaidomy AH, Al-Sanea MM, Albogami S, Albqmi M, Alowaiesh BF, Mostafa EM, Musa A, Youssif KA, Refaat H, Othman EM, Dandekar T, Alaaeldin E, Ghoneim MM, Abdelmohsen UR. An ın vitro and ın silico study of the enhanced antiproliferative and pro-oxidant potential of Olea europaea L. cv. Arbosana leaf extract via elastic nanovesicles (Spanlastics). Antioxidants (Basel). 2021;10(12):1860. http://dx.doi.org/10.3390/antiox10121860 CR - [36] Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review. J Tradit Complement Med. 2016;7(2):205-233. https://doi.org/10.1016/j.jtcme.2016.05.005. CR - [37] Carolina Alves R, Perosa Fernandes R, Fonseca-Santos B, Damiani Victorelli F, Chorilli M. A critical review of the properties and analytical methods for the determination of curcumin in biological and pharmaceutical matrices. Crit Rev Anal Chem. 2019;49:138–149. https://doi.org/10.1080/10408347.2018.1489216 CR - [38] Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4:807–818. https://doi.org/10.1021/mp700113r CR - [39] Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013;15(1):195-218. https://doi.org/10.1208%2Fs12248-012-9432-8 CR - [40] Ismail S, Garhy D, Ibrahim HK. Optimization of topical curcumin spanlastics for melanoma treatment. Pharm Dev Technol. 2023;28(5):425-439. https://doi.org/10.1080/10837450.2023.2204926 CR - [41] Ramadan G, El-Beih NM, Abd El-Ghffar EA. Modulatory effects of black v. green tea aqueous extract on hyperglycaemia, hyperlipidaemia and liver dysfunction in diabetic and obese rat models. Br J Nutr. 2009;102(11):1611-1619. https://doi.org/10.1017/s000711450999208x CR - [42] Rashidinejad A, Birch EJ, Sun-Waterhouse D, Everett DW. Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. Food Chem. 2014;156:176–183. 10.1016/j.foodchem.2014.01.115 CR - [43] Dai W, Ruan C, Zhang Y, Wang J, Han J, Shao Z, Sun Y, Liang J. Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. J Funct Foods. 2020;65:103732. https://doi.org/10.1016/j.jff.2019.103732 CR - [44] Fujiki H, Suganuma M. Green tea: An effective synergist with anticancer drugs for tertiary cancer prevention. Cancer Lett. 2012;324:119–125. https://doi.org/10.1016/j.canlet.2012.05.012 CR - [45] Al-Sayed E, Abdel-Daim MM. Analgesic and anti-inflammatory activities of epicatechin gallate from Bauhinia hookeri. Drug Dev Res. 2018;79:157–164. https://doi.org/10.1002/ddr.21430 CR - [46] Yu Y, Deng Y, Lu BM, Liu YX, Li J, Bao JK. Green tea catechins: A fresh flavor to anticancer therapy. Apoptosis. 2014;19(1):1-18. https://doi.org/10.1007/s10495-013-0908-5 CR - [47] Baba S, Osakabe N, Natsume M, Muto Y, Takizawa T, Terao J. In vivo comparison of the bioavailability of (+)-catechin, (-)-epicatechin and their mixture in orally administered rats. J Nutr. 2001;131(11):2885-2891. https://doi.org/10.1093/jn/131.11.2885 CR - [48] Song Q, Li D, Zhou Y, Yang J, Yang W, Zhou G, Wen J. Enhanced uptake and transport of (+)-catechin and (-)-epigallocatechin gallate in niosomal formulation by human intestinal Caco-2 cells. Int J Nanomedicine. 2014;9:2157-2165. https://doi.org/10.2147%2FIJN.S59331 CR - [49] Cai ZY, Li XM, Liang JP, Xiang LP, Wang KR, Shi YL, Yang R, Shi M, Ye JH, Lu JL, Zheng XQ, Liang YR. Bioavailability of tea catechins and ıts ımprovement. Molecules. 2018;23(9):2346. https://doi.org/10.3390%2Fmolecules23092346 CR - [50] Mazyed EA, Helal DA, Elkhoudary MM, Abd Elhameed AG, Yasser M. Formulation and optimization of nanospanlastics for ımproving the bioavailability of green tea epigallocatechin gallate. Pharmaceuticals (Basel). 2021;14(1):68. https://doi.org/10.3390/ph14010068 CR - [51] Cardoso RV, Pereira PR, Freitas CS, Paschoalin VMF. Trends in drug delivery systems for natural bioactive molecules to treat health disorders: The ımportance of nano-liposomes. Pharmaceutics. 2022;14(12):2808. https://doi.org/10.3390/pharmaceutics14122808 CR - [52] Kyriakoudi A, Spanidi E, Mourtzinos I, Gardikis K. Innovative delivery systems loaded with plant bioactive ıngredients: Formulation approaches and applications. Plants (Basel). 2021;10(6):1238. https://doi.org/10.3390/plants10061238. UR - https://doi.org/10.12991/jrespharm.1666368 L1 - https://dergipark.org.tr/en/download/article-file/4729011 ER -