TY - JOUR T1 - Computational Investigation of Ternary Borides Fe3Al2B2, Ru3Al2B2, and Os3Al2B2: Structural, Mechanical, and Phonon Properties TT - Fe3Al2B2, Ru3Al2B2 ve Os3Al2B2 Üçlü Borürlerin Kuramsal İncelenmesi: Yapısal, Mekanik ve Fonon Özellikleri AU - Özdoğru Şenel, Sibel AU - Ateşer, Engin AU - Özışık, Hacı AU - Deligoz, Engin PY - 2025 DA - August Y2 - 2025 DO - 10.53433/yyufbed.1667463 JF - Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi JO - YYUFBED PB - Van Yuzuncu Yıl University WT - DergiPark SN - 1300-5413 SP - 499 EP - 511 VL - 30 IS - 2 LA - en AB - An investigation has been conducted into the structural, mechanical, electronic, vibrational and thermal properties of Fe3Al2B2, Ru3Al2B2, and Os3Al2B2 with the utilization of first-principles density functional theory (DFT) calculations. The optimized lattice parameters of Fe3Al2B2 demonstrate a high degree of congruence with experimental data, thereby validating the efficacy of the utilized approach. The negative formation energies indicate the thermodynamic stability of all compounds while Fe3Al2B2 has the highest structural stability. Mechanical analysis reveals that Os3Al2B2 has the highest bulk modulus, while Fe3Al2B2 possesses the highest shear modulus. Anisotropy mechanical calculations have confirmed that Os3Al2B2 exhibits the strongest anisotropic behavior. Electronic band structure analysis showed that all compounds have metallic nature. Phonon dispersion calculations have been used to confirm the dynamical stability of Fe3Al2B2 and Ru3Al2B2, while Os3Al2B2 has been shown to possess negative phonon modes, thus indicating potential instability. These findings indicate that Fe3Al2B2 is the most mechanically and thermally stable compound and thus suitable for high strength applications, while the significant anisotropy of Os3Al2B2 makes it ideal for applications requiring directional mechanical properties. KW - Ab initio KW - Fe3Al2B2 KW - Os3Al2B2 KW - Ru3Al2B2 KW - Ternary Borides N2 - Bu çalışmada Fe3Al2B2, Ru3Al2B2 ve Os3Al2B2 bileşiklerinin yapısal, mekanik, elektronik, titreşimsel ve termal özellikleri yoğunluk fonksiyonel teorisine (DFT) dayalı hesaplamalar kullanılarak araştırılmıştır. Fe3Al2B2'nin hesaplanan optimize örgü parametreleri deneysel verilerle gösterdiği iyi derecede uyumluluk kullanılan yaklaşımın etkinliğini ortaya koymaktadır. Belirlenen oluşum enerjilerinin negatif olması tüm bileşiklerin termodinamik kararlılığını gösterirken, Fe3Al2B2 en yüksek yapısal kararlılığa sahiptir. Mekanik analizler Os3Al2B2'nin en yüksek bulk modülüne, Fe3Al2B2'nin ise en yüksek kayma modülüne sahip olduğunu ortaya koymaktadır. Mekanik anizotropi hesaplamaları Os3Al2B2'nin en güçlü anizotropik davranışı sergilediğini doğrulamıştır. Elektronik band yapılarının analizi sonucu tüm bileşiklerin metalik doğaya sahip olduğunu görülmüştür. Fonon dağınımlarından Fe3Al2B2 ve Ru3Al2B2'nin dinamik kararlılıklar doğrulanmış olup, Os3Al2B2'de görülen negatif fonon modları bileşiğin potansiyel kararsızlığa işaret etmektedir. Bu bulgular, Fe3Al2B2'nin mekanik ve termal olarak en kararlı bileşik olduğunu ve bu nedenle yüksek mukavemetli uygulamalar için uygun olduğunu gösterirken, Os3Al2B2'nin yüksek anizotropisi onu yönelime bağlı mekanik özellikler gerektiren uygulamalar için ideal hale getirmektedir. CR - Ade, M., & Hillebrecht, H. (2015). Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: The first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAB-phases. Inorganic Chemistry, 54(13), 6122–6135. https://doi.org/10.1021/acs.inorgchem.5b00049 CR - Ali, M. A., Hadi, M. A., Hossain, M. M., Naqib, S. H., & Islam, A. K. M. A. (2017). Theoretical investigation of structural, elastic, and electronic properties of ternary boride MoAlB. Physica Status Solidi B, 254(7), 1700010. https://doi.org/10.1002/pssb.201700010 CR - Ali, M. M., Hadi, M. A., Rahman, M. L., Haque, F. H., Haider, A. F. M. Y., & Aftabuzzaman, M. (2020). DFT investigations into the physical properties of a MAB phase Cr4AlB4. Journal of Alloys and Compounds, 821, 153547. https://doi.org/10.1016/j.jallcom.2019.153547 CR - Anderson, O. L. (1963). A simplified method for calculating the Debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 24(7), 909–917. https://doi.org/10.1016/0022-3697(63)90067-2 CR - Blum, Y. D., Marschall, J., Hui, D., & Young, S. (2008). Thick protective UHTC coatings for SiC-based structures: Process establishment. Journal of the American Ceramic Society, 91(5), 1453–1460. https://doi.org/10.1111/j.1551-2916.2008.02360.x CR - Cheng, Y., Lv, Z. L., Chen, X. R., & Cai, L. C. (2014). Structural, electronic and elastic properties of AlFe2B2: First-principles study. Computational Materials Science, 92, 253–257. https://doi.org/10.1016/j.commatsci.2014.05.048 CR - Corral, E. L., & Loehman, R. E. (2008). Ultra-high temperature ceramic coatings for oxidation protection of carbon-carbon composites. Journal of the American Ceramic Society, 91(5), 1495–1502. https://doi.org/10.1111/j.1551-2916.2008.02331.x CR - Eremets, M. I., Struzhkin, V. V., Mao, H. K., & Hemley, R. J. (2001). Superconductivity in boron. Science, 293(5528), 272–274. https://doi.org/10.1126/science.1062286 CR - Eroğlu, E., Toffoli, H., Mutlu, R. N., Kandasamy, J., Karaca, M., & Gökalp, I. (2023). Exploring the interaction of water with boron surfaces using density functional theory. Journal of Boron, 8(1), 25–31. https://doi.org/10.30728/boron.1283831 CR - Fahrenholtz, W. G., Hilmas, G. E., Talmy, I. G., & Zaykoski, J. A. (2007). Refractory diborides of zirconium and hafnium. Journal of the American Ceramic Society, 90(5), 1347–1364. https://doi.org/10.1111/j.1551-2916.2007.01583.x CR - Feng, S., Yang, Y., Chen, P., Tang, C., & Cheng, X. (2018). A first-principles study of hypothetical Ti4AlB3 and V4AlB3 phases. Solid State Communications, 281, 17–21. https://doi.org/10.1016/j.ssc.2018.06.009 CR - Gaillac, R., Cudazzo, P., & Rignanese, G. M. (2016). ELATE: A software to visualize and analyze the elastic tensors. Journal of Physics: Condensed Matter, 28(27), 275201. https://doi.org/10.1088/0953-8984/28/27/275201 CR - Herbst, J. F., Fuerst, C. D., & Mishira, R. K. (1991). Coercivity enhancement of melt-spun Nd–Fe–B ribbons using low-level Cu additions. Journal of Applied Physics, 69(8), 5823–5825. https://doi.org/10.1063/1.347861 CR - Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 65(5), 349–354. https://doi.org/10.1088/0370-1298/65/5/307 CR - Hirt, S., Hilfinger, F., & Hillebrecht, H. (2018). Synthesis and crystal structures of the new ternary borides Fe3Al2B2 and Ru9Al3B8 and the confirmation of Ru4Al3B2 and Ru9Al5B8−x (x≈2). Zeitschrift für Kristallographie - Crystalline Materials, 233(5), 295–307. https://doi.org/10.1515/zkri-2017-2095 CR - Huang, Q., Lin, Q., Xu, Y., & Cao, Y. (2025). Predicting potential hard materials in Nb–B ternary boride: First-principles calculations. International Journal of Refractory Metals and Hard Materials, 126, 106927. https://doi.org/10.1016/j.ijrmhm.2024.106927 CR - Johnston, I., Keeler, G., Rollins, R., & Spicklemine, S. (1996). The consortium for upper-level physics software: Solid State Physics Simulations. New York: John Wiley & Sons. CR - Kota, S., Wang, W., Lu, J., Natu, V., Opagiste, C., Ying, G., Hultman, L., May, S. J., & Barsoum, M. W. (2018). Magnetic properties of Cr2AlB2, Cr3AlB4, and CrB powders. Journal of Alloys and Compounds, 767, 474–482. https://doi.org/10.1016/j.jallcom.2018.07.031 CR - Kresse, G., & Furthmüller, J. (1996a). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15–50. https://doi.org/10.1016/0927-0256(96)00008-0 CR - Kresse, G., & Furthmüller, J. (1996b). Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169 CR - Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector-augmented-wave method. Physical Review B, 59(3), 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758 CR - Le Page, Y., & Saxe, P. (2002). Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Physical Review B, 65(10), 104104. https://doi.org/10.1103/PhysRevB.65.104104 CR - Licht, S., Yu, X. W., & Qu, D. Y. (2007). A novel alkaline redox couple: Chemistry of the Fe6+/B2- super-iron boride battery. Chemical Communications, 2007(26), 2753–2755. http://dx.doi.org/10.1039/b701629h CR - Lu, J., Kota, S., Barsoum, M. W., & Hultman, L. (2017). Atomic structure and lattice defects in nanolaminated ternary transition metal borides. Materials Research Letters, 5(4), 235–241. https://doi.org/10.1080/21663831.2016.1245682 CR - Martini, C., Palombarini, G., Poli, G., & Prandstraller, D. (2004). Sliding and abrasive wear behaviour of boride coatings. Wear, 256(6), 608–613. https://doi.org/10.1016/j.wear.2003.10.003 CR - Miao, N., Sa, B., Zhou, J., & Sun, Z. (2011). Theoretical investigation on the transition-metal borides with Ta3B4-type structure: A class of hard and refractory materials. Computational Materials Science, 50(4), 1559-1566. https://doi.org/10.1016/j.commatsci.2010.12.015 CR - Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. https://doi.org/10.1103/PhysRevB.13.5390 CR - Mouhat, F., & Coudert, F. X. (2014). Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 90(22), 224104. https://doi.org/10.1103/PhysRevB.90.224104 CR - Opeka, M. M., Talmy, I. G., Wuchina, E. J., Zaykoski, J. A., & Causey, S. J. (1999). Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. Journal of the European Ceramic Society, 19(13–14), 2405–2414. https://doi.org/10.1016/S0955-2219(99)00129-6 CR - Ozisik, H., Colakoglu, K., Ozisik, H. B., & Deligoz, E. (2010). Structural, elastic, and lattice dynamical properties of Germanium diiodide (GeI2). Computational Materials Science, 50(2), 349–355. http://dx.doi.org/10.1016/j.commatsci.2010.08.026 CR - Ozisik, H., Colakoglu, K., Deligoz, E., & Ateser, E. (2013). First-principles calculations of vibrational and thermodynamical properties of rare-earth diborides. Computational Materials Science, 68, 307–313. http://dx.doi.org/10.1016/j.commatsci.2012.11.003 CR - Ozisik, H., Deligoz, E., Colakoglu, K., & Ciftci, Y. O. (2011). Structural, elastic, and lattice dynamical properties of YB2 compound. Computational Materials Science, 50(3), 1057–1063. http://dx.doi.org/10.1016/j.commatsci.2010.10.046 CR - Ozisik, H., Deligoz, E., Surucu, G., & Ozisik, H. B. (2016). Anisotropic elastic and vibrational properties of Ru2B3 and Os2B3: A first-principles investigation. Materials Research Express, 3(7), 076501. http://dx.doi.org/10.1088/2053-1591/3/7/076501 CR - Panda, K. B., & Chandran, K. S. R. (2006). First-principles determination of elastic constants and chemical bonding of titanium boride (TiB). Acta Materialia, 54(6), 1641–1657. https://doi.org/10.1016/j.actamat.2005.12.003 CR - Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865 CR - Pugh, S. F. (1954). Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philosophical Magazine, 45(367), 823–843. https://doi.org/10.1080/14786440808520496 CR - Ranganathan, S. I., & Starzewski, M. O. (2008). Elastic properties of nanoscale materials. Physical Review Letters, 101(5), 055504. https://doi.org/10.1103/PhysRevLett.101.055504 CR - Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 9(1), 49–58. https://doi.org/10.1002/zamm.19290090104 CR - Schreiber, E., Anderson, O. L., Soga, N., & Bell, J. F. (1975). Elastic constants and their measurement. New York: McGraw-Hill. CR - Takagi, K. (2006). Development and application of high-strength ternary boride-based cermets. Journal of Solid-State Chemistry, 179(9), 2809–2818. https://doi.org/10.1016/j.jssc.2006.01.023 CR - Togo, A. (2023). First-principles phonon calculations with Phonopy and Phono3py. Journal of the Physical Society of Japan, 92(1), 012001. https://doi.org/10.7566/JPSJ.92.012001 CR - Togo, A., Chaput, L., Tadano, T., & Tanaka, I. (2023). Implementation strategies in phonopy and phono3py. Journal of Physics: Condensed Matter, 35(35), 353001. https://iopscience.iop.org/article/10.1088/1361-648X/acd831/meta CR - Voigt, W. (1966). Lehrbuch der Kristallphysik. Wiesbaden: Vieweg+Teubner Verlag. CR - Wei, J., Zhang, L., & Liu, Y. (2021). First-principles calculations of mechanical and thermal properties of Cr–Al–B ternary borides. Solid State Communications, 326, 114182. https://doi.org/10.1016/j.ssc.2020.114182 CR - Yu, X. W., & Licht, S. (2008). A novel high-capacity, environmentally benign energy storage system: Super-iron boride battery. Journal of Power Sources, 179(1), 407–411. https://doi.org/10.1016/j.jpowsour.2007.12.060 CR - Zapata-Solvas, E., Jayaseelan, D. D., Brown, P. M., & Lee, W. E. (2013). Thermal properties of La2O3-doped ZrB2- and HfB2-based ultra-high temperature ceramics. Journal of the European Ceramic Society, 33(15–16), 3467–3472. https://doi.org/10.1016/j.jeurceramsoc.2013.06.009 CR - Zhang, H., Dai, F., Xiang, H., Wang, X., Zhang, Z., & Zhou, Y. (2019a). Phase pure and well-crystalline Cr2AlB2: A key precursor for two-dimensional CrB. Journal of Materials Science & Technology, 35(8), 1593–1600. https://doi.org/10.1016/j.jmst.2019.03.031 CR - Zhang, H., Dai, F., Xiang, H., Zhang, Z., & Zhou, Y. (2019b). Crystal structure of Cr4AlB4: A new MAB phase compound discovered in the Cr-Al-B system. Journal of Materials Science & Technology, 35(4), 530–534. https://doi.org/10.1016/j.jmst.2018.10.006 CR - Zhang, H., Xiang, H., Dai, F., Zhang, Z., & Zhou, Y. (2018). First demonstration of possible two-dimensional MBene CrB derived from MAB phase Cr2AlB2. Journal of Materials Science & Technology, 34(11), 2022–2026. https://doi.org/10.1016/j.jmst.2018.02.024 UR - https://doi.org/10.53433/yyufbed.1667463 L1 - https://dergipark.org.tr/en/download/article-file/4733989 ER -