TY - JOUR T1 - Assessment of the lead, cadmium, mercury, and arsenic adsorption capacities of edta-modified and umodified cellulose fibres from elephant grass (Pennisetum purpureum) AU - Ujah, Innocent AU - Ani, Onuabuchi Nnenna AU - Nneji, Emmanuel PY - 2025 DA - October Y2 - 2025 JF - Trakya University Journal of Natural Sciences JO - Trakya Univ J Nat Sci PB - Trakya University WT - DergiPark SN - 2528-9691 SP - 174 EP - 181 VL - 26 IS - 2 LA - en AB - Heavy metal pollution of water caused by various anthropogenic activities remains a significant global challenge, threatening the supply of clean water. Conventional water remediation approaches are costly with potential environmental risks. Thus, the development of cost-effective and biodegradable remediation methods is imperative. This study assessed the heavy metal adsorption capacities of native and EDTA-modified elephant grass (Pennisetum purpureum) cellulose. Elephant grass was collected from Enugu, Nigeria. The samples were washed and shade-dried. Cellulose was extracted via alkali treatment and bleaching, and then modified with EDTA to enhance its adsorptive properties. Batch adsorption experiments were designed to evaluate the capacities of unmodified and modified cellulose fibers to adsorb heavy metals from aqueous solutions under controlled conditions. The metal ion concentrations before and after adsorption were measured using flame atomic absorption spectrophotometry, and the adsorption capacities were calculated. The unmodified and modified cellulose exhibited the highest affinity for Hg(II) and Cd(II), respectively. Both types effectively removed ~70% of the Hg and Cd ions from solution. These results indicated that the unmodified cellulose was particularly effective for Hg removal, while the modified cellulose excelled in adsorbing Cd. They suggest the potential of these materials for the targeted remediation of specific contaminants and also identify them as cost-effective and biodegradable solutions for remediating heavy metal pollution. KW - Cellulose KW - heavy metals KW - biodegradable KW - remediation KW - adsorption N2 - Çeşitli antropojenik faaliyetler sonucu ağır metallerin neden olduğusu kirliliği, temiz su kaynaklarını tehdit eden önemli bir küresel sorunolmaya devam etmektedir. Geleneksel su arıtma yöntemleri maliyetliolup, potansiyel çevresel dezavantajları da bulunmaktadır. Bu nedenle,uygun maliyetli ve biyolojik olarak parçalanabilir arıtma teknikleriningeliştirilmesi zorunludur. Bu çalışmada, sudan ağır metallerinuzaklaştırılması için fil otundan (Pennisetum purpureum) elde edilenmodifiye edilmemiş ve EDTA ile modifiye edilmiş selülozun adsorpsiyonkapasiteleri değerlendirilmiştir. Fil otu Enugu, Nijerya’dan toplanmıştır.Örnekler yıkanmış ve gölgede kurutulmuştur. Alkali işlem ve ağartmayoluyla selüloz ekstraksiyonu yapılan selüloz, adsorpsiyon özelliklerinigeliştirmek için EDTA ile modifiye edilmiştir. Modifiye edilmemiş veEDTA ile modifiye edilmiş selüloz liflerinin sulu çözeltilerden ağırmetalleri adsorbe etme kapasitelerini değerlendirmek için kontrollükoşullar altında toplu adsorpsiyon deneyleri gerçekleştirilmiştir.Adsorpsiyon öncesi ve sonrası metal iyon konsantrasyonları alev atomabsorpsiyon spektrofotometresi kullanılarak ölçülmüş ve adsorpsiyonkapasiteleri buna göre hesaplanmıştır. Modifiye edilmemiş ve edilmişselüloz en yüksek afiniteyi sırasıyla Hg(II) ve Cd(II) için göstermiştir.Her iki selüloz tipi çözeltilerden yaklaşık %70 oranında Hg ve Cdiyonlarını etkili bir şekilde uzaklaştırmıştır. Bulgular, modifiye edilmemişselülozun Hg gideriminde özellikle etkili olduğunu, modifiye selülozunise Cd adsorpsiyonunda üstün olduğunu göstermiştir. Bu sonuçlar, heriki tip selülozun belirli kirleticilere karşı hedefli arıtma potansiyelinesahip olduğunu düşündürmektedir. Sonuçlar bu maddelerin ağır metalarıtımı için uygun maliyetli ve biyolojik olarak parçalanabilir çözümlerolarak ele alınabileceklerine işaret etmektedir. CR - Abd Elnabi, M. K., Elkaliny, N. E., Elyazied, M. M., Azab, S. H., Elkhalifa, S. A., Elmasry, S., Mouhamed, M. S., Shalamesh, E. M., Alhorieny, N. A., Abd Elaty, A. E., Elgendy, I. M., Etman, A. E., Saad, K. E., Tsigkou, K., Ali, S. S., Kornaros, M., & Mahmoud, Y. A.-G. (2023). Toxicity of heavy metals and recent advances in their removal: A review. Toxics, 11(7), 580. https://doi.org/10.3390/ toxics11070580 CR - Abdelhamid, H. N., & Mathew, A. P. (2021). Cellulose-based materials for water remediation: Adsorption, catalysis, and antifouling. Frontiers in Chemical Engineering, 3, 790314. https://doi.org/10.3389/fceng.2021.790314 CR - Akhtar, N., Syakir Ishak, M. I., Bhawani, S. A., & Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), 2660. https://doi.org/10.3390/w13192660 CR - Ali, M. M., Ali, M. L., Proshad, R., Islam, S., Rahman, Z., Tusher, T. R., Kormoker, T., & Al, M. A. (2020). Heavy metal concentrations in commercially valuable fishes with health hazard inference from Karnaphuli River, Bangladesh. Human and Ecological Risk Assessment, 26(10), 2646–2662. https://doi.org/10.1 080/10807039.2019.1676635 CR - Asefon, T. (2025). Mitigating water pollution through synergistic chemical and ecological approaches. SSRN Electronic Journal. https://ssrn.com/abstract=5175491 CR - Aziz, K. H. H., Mustafa, F. S., Omer, K. M., Hama, S., Hamarawf, R. F., & Rahman, K. O. (2023). Heavy metal pollution in the aquatic environment: Efficient and low-cost removal approaches to eliminate their toxicity: A review. RSC Advances, 13(26), 17595–17610. https://doi.org/10.1039/D3RA00723E CR - Bilal, M., Ihsanullah, I., Younas, M., & Shah, M. U. H. (2021). Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: A critical review. Separation and Purification Technology, 278, 119510. https://doi.org/10.1016/j.seppur.2021.119510 CR - Biswal, B. K., & Balasubramanian, R. (2023). Use of biochar as a low-cost adsorbent for removal of heavy metals from water and wastewater: A review. Journal of Environmental Chemical Engineering, 11(5), 110986. https://doi. org/10.1016/j.jece.2023.110986 CR - Chen, Q., Zheng, J., Wen, L., Yang, C., & Zhang, L. (2019). A multi-functional-group modified cellulose for enhanced heavy metal cadmium adsorption: Performance and quantum chemical mechanism. Chemosphere, 224, 509–518. https://doi.org/10.1016/j.chemosphere.2019.02.138 CR - Chowdhury, M. S., Oliullah, M. S., Islam, R. T., Hurayra, M. A., Al Mahmud, M. Z., & Nazm. (2025). Biomaterials for energy storage: Synthesis, properties, and performance. Green Technology and Sustainability, 3, 100152. https://doi. org/10.1016/j.grets.2024.100152 CR - Darmenbayeva, A., Rajasekharan, R., Massalimova, B., Bektenov, N., Taubayeva, R., Bazarbaeva, K., & Ungarbayeva, A. (2024). Cellulose-based sorbents: A comprehensive review of current advances in water remediation and future prospects. Molecules, 29(24), 5969. https://doi.org/10.3390/ molecules29245969 CR - de Morais Teixeira, E., Bondancia, T. J., Teodoro, K. B. R., Corrêa, A. C., Marconcini, J. M., & Mattoso, L. H. C. (2011). Sugarcane bagasse whiskers: Extraction and characterizations. Industrial Crops and Products, 33(1), 63–66. https://doi.org/10.1016/j.indcrop.2010.08.009 CR - Egbueri, J. C., & Enyigwe, M. T. (2020). Pollution and ecological risk assessment of potentially toxic elements in natural waters from the Ameka metallogenic district in southeastern Nigeria. Analytical Letters, 53(17), 2812–2839. https:// doi.org/10.1080/00032719.2020.1759616 CR - Elbasiouny, H., Darwesh, M., Elbeltagy, H., Abo-Alhamd, F. G., Amer, A. A., Elsegaiy, M. A., El-Sheikh, M. A., & Brevik, E. C. (2021). Ecofriendly remediation technologies for wastewater contaminated with heavy metals with special focus on using water hyacinth and black tea wastes: A review. Environmental Monitoring and Assessment, 193(7), 449. https://doi.org/10.1007/ s10661-021-09236-2 CR - Fomina, M., & Gadd, G. M. (2014). Biosorption: Current perspectives on concept, definition and application. Bioresource Technology, 160, 3–14. https:// doi.org/10.1016/j.biortech.2013.12.102 CR - Fujita, S., Sasa, R., Kinoshita, N., Kishimoto, R., & Kono, H. (2025). Nano-fibrillated bacterial cellulose nanofiber surface modification with EDTA for the effective removal of heavy metal ions in aqueous solutions. Materials, 18(2), 374. https://doi.org/10.3390/ma18020374 CR - Grönwall, J., & Danert, K. (2020). Regarding groundwater and drinking water access through a human rights lens: Self-supply as a norm. Water, 12(2), 419. https://doi.org/10.3390/w12020419 CR - Gupta, A., Sharma, V., Sharma, K., Kumar, V., Choudhary, S., Mankotia, P., Thakur, P., & Mishra, P. K. (2021). A review of adsorbents for heavy metal decontamination: Growing approach to wastewater treatment. Materials, 14(16), 4702. https://doi.org/10.3390/ma14164702 CR - Gupta, V. K., Nayak, A., & Agarwal, S. (2015). Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environmental Engineering Research, 20(1), 1–18. https://doi.org/10.4491/eer.2015.018 CR - Hama Aziz, K. H., Fatah, N. M., & Muhammad, K. T. (2024). Advancements in application of modified biochar as a green and low-cost adsorbent for wastewater remediation from organic dyes. Royal Society Open Science, 11(5), 232033. https://doi.org/10.1098/rsos.232033 CR - Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., & Sengupta, B. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management, 92(10), 2355–2388. https://doi.org/10.1016/j. jenvman.2011.06.009 CR - Ighalo, J. O., & Adeniyi, A. G. (2020). A comprehensive review of water quality monitoring and assessment in Nigeria. Chemosphere, 260, 127569. https://doi. org/10.1016/j.chemosphere.2020.127569 CR - Kaur, A., Setia, H., & Wanchoo, P. R. (2018). Cellulose fiber extracted from Napier grass in PVA composites. Indian Journal of Chemical Technology, 25(1), 88–93. http://op.niscpr.res.in/index.php/IJCT/article/viewFile/7440/465464738 CR - Kaur, J., Sengupta, P., & Mukhopadhyay, S. (2022). Critical review of bioadsorption on modified cellulose and removal of divalent heavy metals (Cd, Pb, and Cu). Industrial & Engineering Chemistry Research, 61(5), 1921–1954. https://doi.org/10.1021/acs.iecr.1c04583 CR - Kenawy, I. M., Hafez, M. A. H., Ismail, M. A., & Hashem, M. A. (2018). Adsorption of Cu(II), Cd(II), Hg(II), Pb(II) and Zn(II) from aqueous single metal solutions by guanyl-modified cellulose. International Journal of Biological Macromolecules, 107, 1538–1549. https://doi.org/10.1016/j.ijbiomac.2017.10.017 CR - Kumar, D., & Khan, E. A. (2021). Remediation and detection techniques for heavy metals in the environment. In Heavy metals in the environment (pp. 205– 222). Elsevier. https://doi.org/10.1016/B978-0-12-821656-9.00012-2 CR - Lailaty, I. Q., Astutik, S., & Surya, M. I. (2024). The growth response of Rendeu (Staurogyne elongata (Neese) Kuntze) to shoot pruning and its propagation by shoot cutting. Journal of Tropical Biodiversity and Biotechnology, 9(1), 77078. https://doi.org/10.22146/jtbb.77078 CR - Morales-Herrera, V. A., Quintero-Álvarez, F. G., Mendoza-Castillo, D. I., Reynel-Ávila, H. E., Aguayo-Villarreal, I. A., Landin-Sandoval, V. J., & Bonilla- Petriciolet, A. (2024). Assessment and modeling of mercury adsorption on carbon-based adsorbents prepared from Jacaranda mimosifolia and guava biomass via pyrolysis and hydrothermal carbonization. Water Practice & Technology, 19(4), 1162–1176. https://doi.org/10.2166/wpt.2024.051 CR - Motloung, M. T., Magagula, S. I., Kaleni, A., Sikhosana, T. S., Lebelo, K., & Mochane, M. J. (2023). Recent advances on chemically functionalized cellulose-based materials for arsenic removal in wastewater: A review. Water, 15(4), 793. https://doi.org/10.3390/w15040793 CR - Nikiforova, T., Kozlov, V., Razgovorov, P., Politaeva, N., Velmozhina, K., Shinkevich, P., & Chelysheva, V. (2023). Heavy metal ions (II) sorption by a cellulose-based sorbent containing sulfogroups. Polymers, 15(21), 4212. https:// doi.org/10.3390/polym15214212 CR - Obasi, P. N., & Akudinobi, B. B. (2020). Potential health risk and levels of heavy metals in water resources of lead–zinc mining communities of Abakaliki, southeast Nigeria. Applied Water Science, 10(7), 1–23. https://doi.org/10.1007/ s13201-020-01233-z CR - Okudo, C. C., Ekere, N. R., & Okoye, C. O. (2023). Quality assessment of non-roof harvested rainwater in industrial layouts of Enugu, South East Nigeria. Applied Water Science, 13(5), 116. https://doi.org/10.1007/s13201-023-01916-3 CR - Oyewo, O. A., Elemike, E. E., Onwudiwe, D. C., & Onyango, M. S. (2020). Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. International Journal of Biological Macromolecules, 164, 2477– 2496. https://doi.org/10.1016/j.ijbiomac.2020.08.074 CR - Rehman, M. U., Taj, M. B., & Carabineiro, S. A. (2023). Biogenic adsorbents for removal of drugs and dyes: A comprehensive review on properties, modification and applications. Chemosphere, 338, 139477. https://doi.org/10.1016/j. chemosphere.2023.139477 CR - Riccardi, D., Guo, H. B., Parks, J. M., Gu, B., Summers, A. O., Miller, S. M., & Smith, J. C. (2013). Why mercury prefers soft ligands. The Journal of Physical Chemistry Letters, 4(14), 2317–2322. https://doi.org/10.1021/jz400885f CR - Saha, P., & Paul, B. (2019). Assessment of heavy metal toxicity related with human health risk in the surface water of an industrialized area by a novel technique. Human and Ecological Risk Assessment, 25(4), 966–987. https://doi. org/10.1080/10807039.2018.1458595 CR - Saravanan, P., Saravanan, V., Rajeshkannan, R., Arnica, G., Rajasimman, M., Baskar, G., & Pugazhendhi, A. (2024). Comprehensive review on toxic heavy metals in the aquatic system: Sources, identification, treatment strategies, and health risk assessment. Environmental Research, 258, 119440. https://doi. org/10.1016/j.envres.2024.119440 CR - Sasan Narkesabad, Z., Rafiee, R., & Jalilnejad, E. (2023). Experimental study on evaluation and optimization of heavy metals adsorption on a novel amidoximated silane functionalized Luffa cylindrica. Scientific Reports, 13(1), 3670. https://doi. org/10.1038/s41598-023-30634-8 CR - Shi, R. J., Wang, T., Lang, J. Q., Zhou, N., & Ma, M. G. (2022). Multifunctional cellulose and cellulose-based (nano)composite adsorbents. Frontiers in Bioengineering and Biotechnology, 10, 891034. https://doi.org/10.3389/ fbioe.2022.891034 CR - Srivastava, V. (2021). Grand challenges in chemical treatment of hazardous pollutants. Frontiers in Environmental Chemistry, 2, 792814. https://doi. org/10.3389/fenvc.2021.792814 CR - Trifirò, F., & Zanirato, P. (2024). Water purification: Physical, mechanical, chemical and biological treatments. Mathews Journal of Pharmaceutical Science, 8, 42. https://doi.org/10.30654/MJPS.10042 CR - Wang, R., Ren, J., Ren, H., Tao, L., Wu, C., Sun, X., & Lv, M. (2023). Enhanced adsorption of Cu2+ from aqueous solution by sludge biochar compounded with attapulgite-modified Fe. Water, 15(23), 4169. https://doi.org/10.3390/w15234169 CR - Yuan, J., Liu, G., Liu, P., & Huang, R. (2024). Comprehensive assessment of elephant grass (Pennisetum purpureum) stalks at different growth stages as raw materials for nanocellulose production. Tropical Plants, 3(1), Article tp-0024- 0013. https://doi.org/10.48130/tp-0024-0013 UR - https://dergipark.org.tr/en/pub/trkjnat/issue//1667484 L1 - https://dergipark.org.tr/en/download/article-file/4734087 ER -