TY - JOUR T1 - Long-Term Capacity Degradation of Lithium-ion Batteries at 40°C: A Spline Regression Approach for Thermal Management Insights TT - Lityum-iyon Pillerin 40°C'de Uzun Vadeli Kapasite Bozulması: Termal Yönetim İçin Spline Regresyon Yaklaşımı AU - Fırat, Coşkun PY - 2025 DA - October Y2 - 2025 DO - 10.29130/dubited.1669254 JF - Duzce University Journal of Science and Technology JO - DÜBİTED PB - Duzce University WT - DergiPark SN - 2148-2446 SP - 1505 EP - 1517 VL - 13 IS - 4 LA - en AB - Lithium-ion batteries are critical for modern energy storage systems, yet their capacity degradation under high temperatures remains a significant challenge. This study investigates the long-term capacity fade of lithium-ion batteries subjected to a consistent high-temperature environment using spline regression to model non-linear degradation trends. Utilizing the Oxford Battery Degradation Dataset, eight lithium-ion pouch cells were analyzed over extended cycles, and complex degradation behaviors and temperature-induced capacity losses were measured. Results demonstrated a strong correlation between elevated temperatures and accelerated degradation, with spline regression achieving near-perfect fits (R² = 1.0000) to the observed data, highlighting its efficacy in modeling non-linear fade patterns. The analysis revealed uniform degradation trends across cells, with minor variations attributed to manufacturing inconsistencies. Temperature profiles during initial cycles underscored the role of thermal dynamics in accelerating side reactions like lithium plating and Solid Electrolyte Interface (SEI) growth. These findings emphasize the necessity of robust thermal management systems to mitigate degradation and extend battery lifespan. The study provides actionable insights for optimizing battery design and management strategies in high-temperature applications, such as electric vehicles and grid storage. KW - Lithium-ion Batteries KW - Capacity Fade KW - High-Temperature Degradation KW - Spline Regression KW - Thermal Management N2 - Lityum-iyon piller, modern enerji depolama sistemleri için kritik öneme sahip olsa da yüksek sıcaklıklardaki kapasite bozulmaları önemli bir sorun olmaya devam etmektedir. Bu çalışma, doğrusal olmayan bozulma eğilimlerini modellemek amacıyla spline regresyon kullanarak, sürekli yüksek sıcaklık ortamına maruz bırakılan lityum-iyon pillerin uzun vadeli kapasite kaybını incelemektedir. Oxford Pil Bozulma Veri Seti'nden yararlanarak, uzun döngüler boyunca sekiz lityum-iyon poşet pil analiz edilmiş ve karmaşık bozulma davranışları ile sıcaklık kaynaklı kapasite kayıpları ölçülmüştür. Sonuçlar, yüksek sıcaklıklar ile hızlanan bozulma arasında güçlü bir korelasyon olduğunu göstermiş; spline regresyonun gözlemlenen verilere neredeyse mükemmel uyum sağladığı (R² = 1,0000) ve doğrusal olmayan bozulma modellerinde etkinliğini kanıtladığı görülmüştür. Analizler, üretim farklılıklarından kaynaklanan küçük sapmalar dışında, hücreler arasında tutarlı bir bozulma eğilimi olduğunu ortaya koymuştur. İlk döngülerdeki sıcaklık profilleri, lityum kaplama ve Katı Elektrolit Ara Yüzü (SEI) büyümesi gibi yan reaksiyonları hızlandıran termal dinamiklerin rolünü vurgulamıştır. Bu bulgular, bozulmayı azaltmak ve pil ömrünü uzatmak için sağlam termal yönetim sistemlerinin gerekliliğini göstermektedir. Çalışma, elektrikli araçlar ve şebeke depolama gibi yüksek sıcaklık uygulamalarında pil tasarımının ve yönetim stratejilerinin optimize edilmesine yönelik uygulanabilir içgörüler sunmaktadır. CR - Apribowo, C. H. B., Sarjiya, S., Hadi, S. P., & Wijaya, F. D. (2022). Optimal planning of battery energy storage systems by considering battery degradation due to ambient temperature: A review, challenges, and new perspective. Batteries, 8(12), Article 290. https://doi.org/10.3390/batteries8120290 CR - Birkl, C. R., (2017). Diagnosis and prognosis of degradation in lithium-ion batteries (Doctoral dissertation, Department of Engineering Science, University of Oxford). CR - Cavalheiro, G. M., Iriyama, T., Nelson, G. J., Huang, S., & Zhang, G. (2020). Effects of nonuniform temperature distribution on degradation of lithium-ion batteries. Journal of Electrochemical Energy Conversion and Storage, 17(2), Article 021101. https://doi.org/10.1115/1.4045205 CR - Fan, L., Khodadadi, J. M., & Pesaran, A. A. (2013). A parametric study on thermal management of an air-cooled lithium-ıon battery module for plug-ın hybrid electric vehicles. Journal of Power Sources, 238, 301–312. https://doi.org/10.1016/j.jpowsour.2013.03.050 CR - Fleckenstein, M., Bohlen, O., Roscher, M. A., & Bäker, B. (2011). Current density and state of charge ınhomogeneities in Li-ıon battery cells with LiFePO4 as cathode material due to temperature gradients. Journal of Power Sources, 196(10), 4769–4778. https://doi.org/10.1016/j.jpowsour.2011.01.043 CR - Howey, D., & Birkl, C. (2017). Oxford Battery Degradation Dataset 1 [Data set; Data collected: 2015-01-08 – 2016-12-31]. University of Oxford. https://doi.org/10.5287/BODLEIAN:KO2KDMYGG CR - Kokam Battery Manufacturing Co., Ltd. (2025). Kokam Battery Manufacturing Co., Ltd. Retrieved March 17, 2025, from http://www.kokamcom.com/ CR - Laidler, K. J. (1984). The development of the Arrhenius equation. Journal of Chemical Education, 61(6), Article 494. https://doi.org/10.1021/ed061p494 CR - Lei, Z., Zhang, C., Li, J., Fan, G., & Lin, Z. (2013). A study on the low-temperature performance of lithium-ion battery for electric vehicles. Qiche Gongcheng (Automotive Engineering), 35(10), 927-933. https://pure.bit.edu.cn/en/publications/a-study-on-the-low-temperature-performance-of-lithium-ion-battery CR - Li, Z., Zhang, J., Wu, B., Huang, J., Nie, Z., Sun, Y., An, F., & Wu, N. (2013). Examining temporal and spatial variations of ınternal temperature in large-format laminated battery with embedded thermocouples. Journal of Power Sources, 241, 536–553. https://doi.org/10.1016/j.jpowsour.2013.04.117 CR - Liao, L., Zuo, P., Ma, Y., Chen, X. Q., An, Y., Gao, Y., & Yin, G. (2012). Effects of temperature on charge/discharge behaviors of LiFePO4 cathode for Li-ion batteries. Electrochimica Acta, 60, 269-273. https://doi.org/10.1016/j.electacta.2011.11.041 CR - Lindgren, J., & Lund, P. D. (2016). Effect of extreme temperatures on battery charging and performance of electric vehicles. Journal of Power Sources, 328, 37-45. https://doi.org/10.1016/j.jpowsour.2016.07.038 CR - Lu, Z., Yu, X. L., Wei, L. C., Cao, F., Zhang, L. Y., Meng, X. Z., & Jin, L. W. (2019). A comprehensive experimental study on temperature-dependent performance of lithium-ion battery. Applied Thermal Engineering, 158, Article 113800. https://doi.org/10.1016/j.applthermaleng.2019.113800 CR - Ma, S., Jiang, M., Tao, P., Song, C., Wu, J., Wang, J., Deng, T., & Shang, W. (2018). Temperature effect and thermal impact in lithium-ion batteries: A review. Progress in Natural Science: Materials International, 28(6), 653-666. https://doi.org/10.1016/j.pnsc.2018.11.002 CR - Qu, J. G., Jiang, Z. Y., & Zhang, J. F. (2022). Investigation on lithium-ion battery degradation induced by combined effect of current rate and operating temperature during fast charging. Journal of Energy Storage, 52(Part A), Article 104811. https://doi.org/10.1016/j.est.2022.104811 CR - Robinson, J. B., Darr, J. A., Eastwood, D. S., Hinds, G., Lee, P. D., Shearing, P. R., Taiwo, O. O., & Brett, D. J. L. (2014). Non-uniform temperature distribution in Li-ion batteries during discharge—a combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach. Journal of Power Sources, 252, 51–57. https://doi.org/10.1016/j.jpowsour.2013.11.059 CR - Shen, W., Wang, N., Zhang, J., Wang, F., & Zhang, G. (2022). Heat generation and degradation mechanism of lithium-ion batteries during high-temperature aging. ACS Omega, 7(49), 44733-44742. https://doi.org/10.1021/acsomega.2c04093 CR - Studden, W. J. (1971). Optimal designs and spline regression. In J. S. Rustagi (Ed.), Optimizing methods in statistics (pp. 63–76). Academic Press. https://doi.org/10.1016/B978-0-12-604550-5.50008-0 CR - Sun, P., Zhang, X., Wang, S., & Zhu, Y. (2022). Lithium-ion battery degradation caused by overcharging at low temperatures. Thermal Science and Engineering Progress, 30, Article 101266. https://doi.org/10.1016/j.tsep.2022.101266 CR - Wang, T., Tseng, K. J., Zhao, J., & Wei, Z. (2014). Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies. Applied Energy, 134, 229–238. https://doi.org/10.1016/j.apenergy.2014.08.013 CR - Wu, B., Li, Z., & Zhang, J. (2015). Thermal design for the pouch-type large-format lithium-ion batteries: I. thermo-electrical modeling and origins of temperature non-uniformity. Journal of The Electrochemical Society., 162(1), A181–A191. https://doi.org/10.1149/2.0831501jes CR - Zhang, G., Cao, L., Ge, S., Wang, C.-Y., Shaffer, C. E., & Rahn, C. D. (2014). In situ measurement of radial temperature distributions in cylindrical Li-ion cells. Journal of The Electrochemical Society, 161(10), 1499–1507. https://doi.org/10.1149/2.0051410jes CR - Zhang, S., Xu, K., & Jow, T. (2003). Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte. Journal of Solid State Electrochemistry, 7, 147–151. https://doi.org/10.1007/s10008-002-0300-9 UR - https://doi.org/10.29130/dubited.1669254 L1 - https://dergipark.org.tr/en/download/article-file/4741997 ER -