TY - JOUR T1 - Numerical and Experimental Analysis of Aerodynamic Performance in Next-Generation Unmanned Aerial Vehicles (UAVs) AU - Olodu, Dıckson Davıd AU - Ihenyen, Osagie Imevbore AU - Erameh, Andrew PY - 2025 DA - October Y2 - 2025 DO - 10.54709/joebs.1670623 JF - Journal of Engineering and Basic Sciences JO - JOEBS PB - Toros University WT - DergiPark SN - 3023-6460 SP - 43 EP - 55 VL - 04 LA - en AB - This study presents a comprehensive numerical and experimental analysis of the aerodynamic performance of next-generation fixed-wing Unmanned Aerial Vehicles (UAVs) to enhance design accuracy and operational efficiency. Using Computational Fluid Dynamics (CFD) simulations performed with ANSYS Fluent and Open FOAM, alongside experimental validations via wind tunnel testing and controlled flight trials, critical aerodynamic parameters such as lift, drag, pressure distribution, stability, and efficiency were investigated. The UAV prototype featured a 2.5 m wingspan, 0.4 m chord length, and a NACA 2412 airfoil.CFD simulations utilized a pressure-based solver with the k-ω SST turbulence model and a 3.2 million-element hybrid mesh across a Reynolds number range of 1.2×10⁵–4.8×10⁵. Experimental tests were conducted at varying angles of attack (AoA) and airspeeds ranging from 10 to 40 m/s. Results revealed strong agreement between numerical and experimental data. Peak lift coefficients of 1.20 (CFD) and 1.18 (experimental) were observed at AoA = 15°, with corresponding drag coefficients of 0.09 and 0.095. Pressure coefficient distributions along the chord at AoA = 10° demonstrated near-identical profiles, confirming simulation reliability. Stall onset occurred at AoA = 20°, with flow separation initiating around 50% of the chord length.Flight performance metrics showed a max range of 35 km (CFD) and 33.5 km (experimental), and glide ratios of 16 and 15.2, respectively. The study validates CFD as a robust predictive tool, bridging simulation and real-world performance, and offers a reliable methodology for optimizing UAV aerodynamic design for improved endurance, range, and overall flight efficiency. KW - Aerodynamic Performance KW - KW - CFD Simulation KW - KW - Flight Testing KW - KW - Pressure Distribution KW - KW - Unmanned Aerial Vehicle. CR - Zhang, Z., Xie, C., Wang, W., & An, C. (2023). An Experimental and Numerical Evaluation of the Aerodynamic Performance of a UAV Propeller Considering Pitch Motion. Drones, 7(7), 447. https://doi.org/10.3390/drones7070447 CR - Al-Khafaji, J. D., Panatov, G. S., & Boldyrev, A. S. (2023). Unmanned aerial vehiCLe aerodynamics performance optimization using variable sweep wing angle. Izvestiâ ÛFU, 3, 212–223. https://doi.org/10.18522/2311-3103-2023-3-212-223 CR - Krishna, B. V., & Manoj, D. (2024). Advancements In UAV Wing Design: Aerodynamic Performance, Structural Integrity and Optimization Techniques. IOSR Journal of Mechanical and Civil Engineer-ing. 21(6); 34–37 https://doi.org/10.9790/1684-2106013437 CR - Geydirici, E., Derman, K. C., & Cadirci, S. (2024). Aerodynamic Performance Evaluation of a Coaxi-al Octocopter Based on Taguchi Method, 146(10), Article No. 101204 https://doi.org/10.1115/1.4065229 CR - Oladejo, K. L., Alabi, A. A., & Dambatta, Y. S. (2023). Aerodynamic Performance Analysis of an Optimized Aerofoil for Unmanned Aerial Vehi-CLes. https://doi.org/10.21203/rs.3.rs-3361965/v1 CR - Muta’ali, A. B. A., Nasir, R. E. M., & Kuntjoro, W. (2024). Aerodynamic investigation by experi-mental and computational simulation of a flying wing unmanned aerial vehiCLe for cargo delivery and surveillance missions. Aviation, 28(4), 264–278. https://doi.org/10.3846/aviation.2024.22639 CR - Gan, W., Wang, Y., Wang, H., & Zhuang, J. (2024). Aerodynamic Investigation on a Coaxial-Rotors Unmanned Aerial VehiCLe of Bionic Chinese Parasol Seed. Biomimetics, 9(7), 403. https://doi.org/10.3390/biomimetics9070403 CR - Khan Martins, M. H., Islam, A., Arif, M. A., Moiz, A., Iqbal, S., Rasheed, S. M. M. H., & Abbas, H. (2024). Comparative Analysis of Tandem Wing Tube-Launched UAV Aerodynamics: Computa-tional Fluid Dynamics (CFD). 1–8. https://doi.org/10.1109/icodt262145.2024.10740235 CR - Asral, K. A., & Soegihin, A. (2022). Aerodynamic Analysis of Unnamed Aerial VehiCLe Serindit V-2 Using Computational Fluid Dynamics. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 93(1), 83–93. https://doi.org/10.37934/arfmts.93.1.8393 CR - Ünsal, H., & Düzgün, M. (2024). Modeling the aerodynamic performance of unmanned aerial vehiCLe (UAV) propellers with multifidelity method. International Journal of Automotive En-gineering and Technologies, 13(4), 153–169. https://doi.org/10.18245/ijaet.1485834 CR - Santos, D. F., Rogers, J. V., de Rezende, A., & Maldonado, V. (2023). Exploring the Perfor-mance Boundaries of a Small Reconfigurable Multi-Mission UAV through Multidisciplinary Analysis. Aerospace. 10(8), 684-688. https://doi.org/10.3390/aerospace10080684 CR - Moustafa, M. H., Khashwain, H. S., Dol, S. S., & Ramahi, A. A. (2024). Enhancing Aerodynamic Performance in UAV Design: CFD Analysis. https://doi.org/10.20944/preprints202409.0340.v1 CR - Toman, U. T. (2024). High-fidelity aerodynamic and aerostructural optimization of UAV propellers. https://doi.org/10.31274/td-20240329-383 CR - He, P., Koyuncuoglu, H., Dhulipalla, A., Hu, H. X. S., & Hu, H. (2023). High-fidelity aerodynamic and aerostructural optimization of UAV propel-lers using the adjoint method. AIAA SCITECH 2023 Forum. https://doi.org/10.2514/6.2023-0531 CR - Wang, H., Zhang, C., & Chen, J. (2024). Effective Aerodynamics Modeling Based on Phys-ics-Informed Neural Network and Flight Data. 1–7. https://doi.org/10.1109/dasc62030.2024.10748687 CR - Lee, H. M., Ryu, J. K., Ahn, S. J., & Kwon, O. J. (2014). Aerodynamic Design Optimization of Mul-ti-rotor UAV Rotor Blades Using a Genetic Algo-rithm in Hover. 362–366. CR - Wu, Y., Liu, D., Wang, T., & Zhao, A. (2023). Re-search of a novel aerodynamic evaluation method for fixed-wing UAV. 2633(1), 012001 https://doi.org/10.1088/1742-6596/2633/1/012001 CR - Zhu, H., Jiang, Z., Hang, Z., Siyu, P., Li, H., & Lan, Y. (2021). Aerodynamic Performance of Propellers for Multirotor Unmanned Aerial Ve-hiCLes: Measurement, Analysis, and Experiment. Shock and Vibration, 2021, 1–11. https://doi.org/10.1155/2021/9538647 CR - Pezzella, G. (2023). Aerodynamic analysis of a high-speed aircraft from hypersonic down to subsonic speeds. Materials Research Proceedings, 37, 230-233. https://doi.org/10.21741/9781644902813-50 CR - Kalgutkar, S. V., & Devi, B. (2024). Aerodynamic Assessment of Flying Wing UAV and Impact of Dimples on its Performance. SSRG International Journal of Mechanical Engineering. 11(7), 109-115. https://doi.org/10.14445/23488360/ijme-v11i7p109 CR - Pérez Gordillo, A. M., Escobar, J. A., Poroseva, S. V., & Lopez, O. D. (2023). Aerodynamic perfor-mance of a Quadcopter in Hover Flight with the Unsteady Vortex Lattice Method. AIAA Scitech 2023 Forum, Paper 2023-3756, pp. 1-13. https://doi.org/10.2514/6.2023-3756. CR - Prakash, R. A., Kumar, M. S., Vijayanandh, R., Kumar, K. N., Prathap, M., Aswanth, S., Ajithku-mar, A., & Jagadeeshwaran, P. (2022). Design and performance investigations on UAV’s conver-gent-divergent nozzle through validated computational aerodynamic simulation. NuCLeation and Atmospheric Aerosols. https://doi.org/10.1063/5.0108306 CR - Pertiwi, F. D., & Wahjudi, A. (2022). Numerical Study of Blended Winglet Geometry Variations on Unmanned Aerial VehiCLe Aerodynamic Per-formance. JMES: The International Journal of Mechanical Engineering and Sciences, 6(1), 31. https://doi.org/10.12962/j25807471.v6i1.12317 CR - Numerical Investigation of Aerodynamic Char-acteristics of Wing of Ichoku-18 Unmanned Aerial VehiCLe. (2022). https://doi.org/10.21203/rs.3.rs-1194453/v1 CR - Kaynak, B., & Arabul, A. Y. (2023). Aerodynamic Efficiency and Performance Development in an Electric Powered Fixed Wing Unmanned Aerial VehiCLe. Electric Power Components and Sys-tems, 51, 724–732. https://doi.org/10.1080/15325008.2023.2187097 CR - Si, P., Wu, M., Huo, Y., & Wu, Z. (2024). Investiga-tion on the transient aerodynamics of a tube-launched unmanned aerial vehiCLe with a span-extended wing. Journal of Physics, 2820(1), 012074. https://doi.org/10.1088/1742-6596/2820/1/012074 CR - Aleisa, H., Kontis, K., & Nikbay, M. (2023). Nu-merical Investigations on Low-Speed Aerody-namic Characteristics of Generic Unmanned Combat Aerial VehiCLe Configurations. Journal of Aircraft, 1–11. https://doi.org/10.2514/1.c037258 CR - Gao, X., & Wu, T. (2023). A novel aerodynamic layout design of composite wing unmanned aerial vehiCLe based on canard configuration. Applied and Computational Engineering. Article 20230085, pp. 1-15. https://doi.org/10.54254/2755-2721/9/20230085 CR - Ugbane, S. I., Umeaku, C., Idoko, I. P., Enyejo, L. A., Michael, C. I., & Efe, F. (2024). Optimization of Quadcopter Propeller Aerodynamics Using Blade Element and Vortex Theory. International Journal of Innovative Science and Research Technology, 11(10), 1708-1756. https://doi.org/10.38124/ijisrt/ijisrt24oct1820 CR - Patel, K. R., & Sivapragasam, M. (2023). Aero-dynamic Performance of an Unmanned Aerial VehiCLe Wing for Varied Wing Geometric Pa-rameters. Journal of Applied Science & Technol-ogy (JOAST), 75(3), 888-900.https://doi.org/10.61653/joast.v75i3.2023.888 CR - Durmuş, S. (2023). Uçan Kanat Tipi İHA’larda Kanat Profillerinin Aerodinamik Performans Karşılaştırması. International Journal of Innova-tive Engineering Applications. 6(4), 150-157. https://doi.org/10.46460/ijiea.1169652 UR - https://doi.org/10.54709/joebs.1670623 L1 - https://dergipark.org.tr/en/download/article-file/4748099 ER -