TY - JOUR T1 - A New Artificial Neural Network Based Power Estimation Study for Wind Energy Systems AU - Taşdemir, Bahtiyar AU - Yaz, Mustafa PY - 2025 DA - November Y2 - 2025 DO - 10.29137/ijerad.1672778 JF - International Journal of Engineering Research and Development JO - IJERAD PB - Kirikkale University WT - DergiPark SN - 1308-5506 SP - 567 EP - 576 VL - 17 IS - 3 LA - en AB - Today, the demand for electrical energy is constantly increasing, primarily due to the advances in the industrial sector. This increase in demand has made wind energy a prominent option in the search for alternative energy sources due to its low investment costs and environmental friendliness. However, accurate forecasting methods are needed due to the variability of wind energy production affected by meteorological data. Including additional parameters besides the existing meteorological data could help improve the accuracy of these forecasts. This study explores the impact of the particulate matter (PM10) parameter on wind energy prediction through the employment of an artificial neural network (ANN) model. The comparison of prediction results based on Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) demonstrates that, when it comes to the daily wind power prediction of the PM10 parameter, the prediction model based on the artificial neural network (ANN) makes a significant contribution. KW - Artificial neural network KW - forecasting KW - optimization KW - wind power generation CR - Abdoos, A. A. (2016). A new intelligent method based on a combination of VMD and ELM for short-term wind power forecasting. Neurocomputing, 203, 111–120. https://doi.org/10.1016/j.neucom.2016.03.054 CR - Ağbulut, Ü., Gürel, A. E., & Biçen, Y. (2021). Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renewable and Sustainable Energy Reviews, 135, 110114. https://doi.org/10.1016/j.rser.2020.110114 CR - Anderson, D., & McNeill, G. (1992). Artificial neural networks technology. Kaman Sciences Corporation. CR - Caudill, M. (1987). Neural network part 1. AI Expert, 2(12), 46–52. CR - Ding, Y., Chen, Z., Zhang, H., Wang, X., & Guo, Y. (2022). A short-term wind power prediction model based on CEEMD and WOAKELM. Renewable Energy, 189, 188–198. https://doi.org/10.1016/j.renene.2022.02.108 CR - Du, P., Wang, J., Yang, W., & Niu, T. (2019). A novel hybrid model for short-term wind power forecasting. Applied Soft Computing, 80, 93–106. https://doi.org/10.1016/j.asoc.2019.03.035 CR - Dubey, N., & Pervez, S. (2008). Investigation of variation in ambient PM10 levels within an urban-industrial environment. Aerosol and Air Quality Research, 8(1), 54–64. https://doi.org/10.4209/aaqr.2007.07.0033 CR - Farah, S., David, A. W., Humaira, N., Aneela, Z., & Steffen, E. (2022). Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning. Renewable and Sustainable Energy Reviews, 167, 112700. https://doi.org/10.1016/j.rser.2022.112700 CR - Global Wind Energy Council. (2025). GWEC. https://gwec.net Date of acces: 10 February 2025 CR - Guo, N.-Z., Shi, K.-Z., Li, B., Qi, L.-W., Wu, H.-H., Zhang, Z.-L., & Xu, J.-Z. (2022). A physics-inspired neural network model for short-term wind power prediction considering wake effects. Energy, 261, 125208. https://doi.org/10.1016/j.energy.2022.125208 CR - Jiang, T., & Liu, Y. (2023). A short-term wind power prediction approach based on ensemble empirical mode decomposition and improved long short-term memory. Computers and Electrical Engineering, 110, 108830. https://doi.org/10.1016/j.compeleceng.2023.108830 CR - Karakoç, O., & Ekercin, S. (2024). Generation of PM10 map with Sentinel-2 satellite images: The case of Çankırı Province. Afyon Kocatepe University Journal of Sciences and Engineering, 24(2), 350–359. https://doi.org/10.35414/akufemubid.1372761 CR - Koç, M. L., Balas, C. E., & Arslan, A. (2004). Preliminary design of rock-filled breakwaters using artificial neural networks. Technical Journal, 15(74). CR - Kohonen, T. (1987, June 21). State of the art in neural computing. In IEEE First International Conference on Neural Networks. CR - Lever, J., Krzywinski, M., & Altman, N. (2016). Model selection and overfitting. Nature Methods, 13(9), 703–704. https://doi.org/10.1038/nmeth.3968 CR - Li, Z., Luo, X., Liu, M., Cao, X., Du, S., & Sun, H. (2022). Short-term prediction of the power of a new wind turbine based on IAOLSTM. Energy Reports, 8, 9025–9037. https://doi.org/10.1016/j.egyr.2022.07.030 CR - Li, Z., Ye, L., Zhao, Y., Pei, M., Lu, P., Li, Y., & Dai, B. (2023). A spatiotemporal directed graph convolution network for ultra-shortterm wind power prediction. IEEE Transactions on Sustainable Energy, 14(1), 39–54. https://doi.org/10.1109/TSTE.2022.3198816 CR - Liao, X., Liu, Z., Zheng, X., Ping, Z., & He, X. (2023). Wind power prediction based on periodic characteristic decomposition and a multilayer attention network. Neurocomputing, 534, 119–132. https://doi.org/10.1016/j.neucom.2023.02.061 CR - Meng, A., Chen, S., Ou, Z., Xiao, J., Zhang, J., Chen, S., Zhang, Z., Liang, R., Zhang, Z., Xian, Z., Wang, C., Yin, H., & Yan, B. (2022). A novel few-shot learning approach for wind power prediction applying secondary evolutionary generative adversarial network. Energy, 261, 125276. https://doi.org/10.1016/j.energy.2022.125276 CR - Öztemel, E. (2006). Artificial neural networks (2nd ed.). Papatya Publishing. CR - Öztürk, M., Kayabaşı, R., & Taşdemir, O. (2025). Wind energy potential of kırşehir and power analysis of wind power plants in the central anatolia region. Kahramanmaraş Sütçü İmam University Journal of Engineering Sciences, 28(1), 189-201. https://doi.org/10.17780/ksujes.1533576 CR - Ray, S. S., Verma, R. K., Singh, A., Ganesapillai, M., & Kwon, Y.-N. (2023). A holistic review of how artificial intelligence has redefined water treatment and seawater desalination processes. Desalination, 546, 116221. https://doi.org/10.1016/j.desal.2022.116221 CR - Saraç, T. (2005). Estimating software project duration using artificial neural networks [Master's thesis, Gazi University Institute of Natural Sciences]. CR - Teke, A., Yıldırım, H. B., & Çelik, Ö. (2015). Evaluation and performance comparison of different models for the estimation of solar radiation. Renewable and Sustainable Energy Reviews, 50, 1097–1107. https://doi.org/10.1016/j.rser.2015.05.049 CR - Türkiye Elektrik İletim A.Ş. (2025). TEİAŞ. https://www.teias.gov.tr CR - Wang, J., Zhu, H., Cheng, F., Zhou, C., Zhang, Y., Xu, H., & Liu, M. (2023). A novel wind power prediction model improved with feature enhancement and autoregressive error compensation. Journal of Cleaner Production, 420, 138386. https://doi.org/10.1016/j.jclepro.2023.138386 CR - Wang, L., & He, Y. (2022). M2STAN: Multi-modal multi-task spatiotemporal attention network for multi-location ultra-short-term wind power multi-step predictions. Applied Energy, 324, 119672. https://doi.org/10.1016/j.apenergy.2022.119672 CR - Xiao, L., Qian, F., & Shao, W. (2017). Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm. Energy Conversion and Management, 143, 410–430. https://doi.org/10.1016/j.enconman.2017.04.012 CR - Yamaçlı, V. (2025). Long-term and short-term memory in wind power forecasting: the effect of data sampling and clustering. Kahramanmaraş Sütçü İmam University Journal of Engineering Sciences, 28(1), 202-215. https://doi.org/10.17780/ksujes.1535461 CR - Zhang, F., Li, N., Li, L., Wang, S., & Du, C. (2023). A local semi-supervised ensemble learning strategy for the data‐driven soft sensor of the power prediction in wind power generation. Fuel, 333, 126435. https://doi.org/10.1016/j.fuel.2022.126435 CR - Zhao, X., Wang, C., Su, J., & Wang, J. (2019). Research and application based on the swarm intelligence algorithms and artificial intelligence for wind farm decision systems. Renewable Energy, 134, 681–697. https://doi.org/10.1016/j.renene.2018.11.061 UR - https://doi.org/10.29137/ijerad.1672778 L1 - https://dergipark.org.tr/en/download/article-file/4758162 ER -