TY - JOUR T1 - Electrophoretic Deposition of Nano Hydroxyapatite Particles Synthesized by Microemulsion and Purified by Foaming Techniques on Ti6Al4V Substrates TT - Mikroemülsiyonla Sentezlenen ve Köpürtme Tekniğiyle Saflaştırılan Nano Hidroksiapatit Parçacıklarının Ti6Al4V Altlıklar Üzerinde Elektroforetik Birikimleri AU - Altınpınar, Arzu AU - Telli, Mustafa Burak PY - 2025 DA - October Y2 - 2025 DO - 10.2339/politeknik.1674243 JF - Politeknik Dergisi PB - Gazi University WT - DergiPark SN - 2147-9429 SP - 1 EP - 1 LA - en AB - Hydroxyapatite (HAp) nanopowders, a biocompatible material, were synthesized by microemulsion method and coated on Ti6Al4V substrates by electrophoretic deposition (EPD) technique. Excess SDS was found to be coated during EPD as well and affecting posited on coating morphology adversely. Therefore, synthesized nano-hydroxyapatite particle suspension was purified by foaming technique achieved by rapid mixing to remove excess Sodium Dodecyl Sulfate (SDS) surfactant. Nano HAp particles were coated electrophoretically on Ti6Al4V substrate in deionized water using DC power supply at electric fields of 30 and 60 V/cm and coating durations of 5, 10 and 20 minutes. Scanning electron microscopy (SEM) investigation showed that synthesized nano HAp particles had particle size below 200 nm. Powder X-Ray Diffraction analysis illustrated that synthesized nano HAp particles had mainly hexagonal crystal structure and crystallite size of 11.54 nm based on Debye Scherrer calculation. Both powder XRD and SEM energy dispersive X-ray spectroscopy (EDS) analyses proved that foaming was effective for removal of excess SDS surfactant from suspension. EPD study also showed that nano HAp particles that were removed from excess surfactant by foaming could be deposited on Ti6Al4V substrates more effectively with better coating morphologies. KW - Electrophoretic Deposition KW - Foaming KW - Hydroxyapatite KW - Microemulsion. N2 - Biyouyumlu bir malzeme olan Hidroksiapatit (HAp) nanotozları mikroemülsiyon yöntemi ile sentezlenmiş ve elektroforetik biriktirme (EPD) tekniği ile Ti6Al4V altlıklar üzerine kaplanmıştır. EPD sırasında fazla SDS'nin de kaplandığı ve kaplama morfolojisini olumsuz yönde etkilediği görülmüştür. Bu nedenle sentezlenen nano-hidroksiapatit parçacık süspansiyonu, fazla Sodyum Dodesil Sülfat (SDS) yüzey aktif maddesini uzaklaştırmak için hızlı karıştırma ile elde edilen köpürtme tekniği ile saflaştırılmıştır. Nano HAp parçacıkları, 30 ve 60 V/cm elektrik alanlarında ve 5, 10 ve 20 dakikalık kaplama sürelerinde DC güç kaynağı kullanılarak deiyonize su içindeki Ti6Al4V altlık üzerine elektroforetik olarak kaplanmıştır. Taramalı elektron mikroskobu (SEM) incelemesi, sentezlenen nano HAp parçacıklarının parçacık boyutunun 200 nm' nin altında olduğunu göstermiştir. X-Ray Difraksiyon (XRD) analizi, sentezlenen nano HAp parçacıklarının Debye Scherrer hesaplamasına göre çoğunlukla hegzagonal kristal yapıya ve 11,54 nm kristalit boyutuna sahip olduğunu göstermiştir. Hem XRD hem de Enerji Dağılımlı X-ışını spektroskopisi (EDS) analizleri, köpürtmenin süspansiyondan fazla SDS yüzey aktif maddesinin uzaklaştırılmasında etkili olduğunu kanıtlamıştır. EPD çalışması ayrıca, köpürtme yoluyla fazla yüzey aktif maddeden uzaklaştırılan nano HAp parçacıklarının daha iyi kaplama morfolojileriyle Ti6Al4V altlıkları üzerine daha etkili bir şekilde biriktirilebileceğini göstermiştir. CR - [1] Ochoa T. A., Silva G. A., “Microemulsion Based Nanostructures for Drug Delivery”, Frontiers in Nanotecnology, 3: (2022). CR - [2] Zori M. H., “Synthesis of TiO2 Nanoparticles by Microemulsion/ Heat Treated Method and Photodegradation of Methylene Blue”, Journal of Inorganic and Organometallic Polymers and Materials, 21: 81–90, (2011). CR - [3] Subramanian R., Murugan P., Chinnadurai G., Ponmurugan K. and Al-Dhabi N.A., “Experimental Studies on Caffeine Mediated Synthesis of Hydroxyapatite Nanorods and Their Characterization”, Material Research Express, 7: (2020). CR - [4] Targonska S., Sikora M., Marycz K., Smieszek A., and Wiglusz R. J., “Theranostic Applications of Nanostructured Silicate-Substituted Hydroxyapatite Codoped with Eu3+ and Bi3+ Ions A Novel Strategy for Bone”, ACS Biomaterials Science & Engineering, 6:6148-6160, (2020). CR - [5] Rocca M.L., Rinaldi A., Bruni G., Friuli V., Maggi L. and Bini M., “New Emerging Inorganic- Organic Systems for Drug Delivery: Hydroxyapatite @ Furosemide Hybrids”, Journal of Inorganic and Organometallic Polymers and Materials, 32: 2249-2259, (2022). CR - [6] Fatimah I., Citradewi P.W., Yahya A., Nugroho B.H., Hidayat H., Purwiandono G., Ghazali S.A.I.S.M. and Ibrahim S., “Biosynthesized gold nanoparticles-doped hydroxyapatite as antibacterial and antioxidant nanocomposite”, Material Research Express, 8: (2021). CR - [7] Adamu D.B., Zereffa E., Segne T.A., Razali M.H. and Lemu B.R, “Synthesis of iron-substituted hydroxyapatite nanomaterials by co-precipitation method for defluoridation”, Material. Reserch. Express, 10: (2023). CR - [8] Nooeaid P., Cha-aim K., Chuysinuan P., Pengsuk C., Thanyacharoern T., Sophonputtanaphoca S. and Techasakul S., “Nutrient controlled release behaviors and plant growth of NPK encapsulated hydroxyapatite/ alginate biocomposite toward agricultural and environmental sustainability”, Material. Reserch Express, 11:(2024). CR - [9] Abidi S.S.A. and Murtaza Q., “Synthesis and Characterization of Nano-hydroxyapatite Powder Using Wet Chemical Precipitation Reaction”, J. Mater. Sci. Technol., 30: 307-310, (2013). CR - [10] Prakash V. C.A., Venda I., Thamizharasi V. and Sathya E., “Infuence of DMSO‑Sr on the Synthesis of Hydroxyapatite by Hydrothermal Coupled Microemulsion Method”, Journal of Inorganic and Organometallic Polymers and Materials, 31: 1095-1101, (2021). CR - [11] Abdel‑Aal E. A., El‑Sayed D., Abdel‑Ghafar H. M., “Hydrothermal synthesis of hydroxyapatite crystals with and without seed crystals and surfactant”, Discover Applied Sciences, 6:143, (2024). CR - [12] Silva C.C., Pinheiro A.G., Miranda M.A.R., Góes J.C. and Sombra A.S.B., “Structural properties of hydroxyapatite obtained by mechanosynthesis”, Solid State Sciences, 5: 553-558, (2003). CR - [13] Castro M.A.M., Portelaa T.O., Correaa G.S., Oliveiraa M.M., Rangel J.H.G., Rodrigues S.F. and Mercury J.M.R., “Synthesis of hydroxyapatite by hydrothermal and microwave irradiation methods from biogenic calcium source varying pH and synthesis time”, Boletín de la Sociedad Española de Cerámica y Vidrio, 61: 35-41, (2022). CR - [14] Catauro M., Barrino F., Blanco I., Piccolella S. and Pacifico S., “Use of the Sol–Gel Method for the Preparation of Coatings of Titanium Substrates with Hydroxyapatite for Biomedical Application”, Coatings, 10: 203, (2020). CR - [15] Prakash V.C.A., Venda I. and Thamizharasi V., “Synthesis and characterization of surfactant assisted hydroxyapatite powder using microemulsion method”, Materials Today: Proceedings, 51: 1788-1792, (2022). CR - [16] Prakash V.C.A., Venda I., Thamizharasi V. and Sathya E., “A comparative study on microemulsion synthesis of hydroxyapatite powders by ionic and Non-Ionic surfactants”, Materials Today: Proceedings 51: 1701-1705, (2022). CR - [17] Alam Md. K., Hossain Md. S., Kawsar Md., Bahadurb N.M. and Ahmed S., “Synthesis of nano-hydroxyapatite using emulsion, pyrolysis, combustion, and sonochemical methods and biogenic sources: a review”, Royal Society of Chemistry, 14: 3548-3559, (2024). CR - [18] Saha S.K., Banerjee A., Banerjee S. and Bose S., “Synthesis of nanocrystalline hydroxyapatite using surfactant template systems: Role of templates in controlling morphology”, Materials Science and Engineering C, 29: 2294–2301, (2009). CR - [19] Singh G., Jolly S.S. and Singh R.P., “Investigation of surfactant role in synthesis of hydroxyapatite nanorods under microwave and hydrothermal conditions”, Materials Today: Proceedings, 26: 2701-2710, (2020). CR - [20] Szczes A., “Influence of SDS on particle size and adhesion of precipitating calcium carbonate”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 320: 98-103, (2008). CR - [21] Caoa B., Yangb M., Wanga L., Xua, Y.Zhua H. and Mao C., “Cleaning the Surface of Hydroxyapatite Nanorods by a Reaction-Dissolution Approach”, J Mater Chem. B Mater Biol Med., 21:7667-7672, (2015). CR - [22] Lin D.J., Lin H.L., Haung S.M., Liu S.M. and Chen W.C., “Effect of pH on the In Vitro Biocompatibility of Surfactant Assisted Synthesis and Hydrothermal Precipitation of Rod Shaped Nano Hydroxyapatite”, Polymers, 13: (2021). CR - [23] Singh G., Jolly S.S. and Singh R.P., “Investigation of surfactant role in synthesis of hydroxyapatite nanorods under microwave and hydrothermal conditions”, Materials Today: Proceedings, 26: 2701- 2710, (2020). CR - [24] Jiang N., Yu X., Sheng Y., Zong R., Li C. and Lu S., “Role of salts in performance of foam stabilized with sodium dodecyl sulfate”, Chemical Engineering Science, 216: (2020). CR - [25] Farrokhi-Rad M., Khosrowshahi, H. Hassannejad Y.B., Nouri A. and Hosseini M., “Preparation and characterization of hydroxyapatite/ titania nanocomposite coatings on titanium by electrophoretic deposition”, Material Reserch Express, 5: (2018). CR - [26] Gorejova R., Orinakova R., Kralova Z.O., Sopcak T., Sisolakova I., Schnitzer M., Kohan M. and Hudak R., “Electrochemical deposition of a hydroxyapatite layer onto the surface of porous additively manufactured Ti6Al4V scaffolds”, Surface & Coatings Technology, 455: 129207. ,(2023). CR - [27] Annur D., Hasanah L.N., Kartika I., Supriadi S. and Suharno B., “Effect of hydroxyapatite concentration and electrophoretic deposition (EPD) parameter process on hydroxyapatite/chitosan coating quality for porous titanium as orthopedic implant”, The Canadian Journal of Metallurgy and Materials Science, 64:35-42, (2025). CR - [28] Jaafar A., Schimpf C., Mandel M., Hecker C., Rafaja D., Krüger L., Arkil P. and Joseph Y., “Sol–gel derived hydroxyapatite coating on titanium implants: Optimization of sol–gel process and engineering the interface”, Journal of Materials Research, 37: 2558–2570, (2022). CR - [29] Heimann R.B., “Plasma-Sprayed Osseoconductive Hydroxylapatite Coatings for Endoprosthetic Hip Implants: Phase Composition, Microstructure, Properties, and Biomedical Functions”, Coatings, 14: (2024). CR - [30] Abushahba F., Areid N., Kylmäoja E., Holopainen J., Ritala M., Hupa L., Tuukkanen J. and Närhi T., “Effect of Atomic-Layer-Deposited Hydroxyapatite Coating on Surface Thrombogenicity of Titanium", Coatings,13: (2023). CR - [31] Drevet R., Jaber N.B., Fauré J., Tara A., Larbi A.B.C. and Benhayoune H., “Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V substrates”, Surface & Coatings Technology, 301: 94-99, (2016). CR - [32] Aydın İ., Bahçepınar A. İ. and Ayvaz M., “Hydroxyapatite coating processes with EPD method and investigation of mechanical properties of coatings”, International Advanced Researches and Engineering Journal, 06: 106-112, (2022). CR - [33] Majidi S., Jaleh B., Mohazzab B.F., Eslamipanah M. and Moradi A., “Wettability of Graphene Oxide/Zinc Oxide Nanocomposite on Aluminum Surface Switching by UV Irradiation and Low Temperature Annealing”, Journal of Inorganic and Organometallic Polymers and Materials, 30: 3073–3083, (2020). CR - [34] Laska A. and Bartmański M., “Parameters Of The Electrophoretic Deposition Process And Its Influence On The Morphology Of Hydroxyapatite Coatings Review”, Materials Eng., 1: 20-25, (2020). CR - [35] Teira S., Elonevaa S., Fogelholma C.J. and Zevenhoven R., “Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production”, Energy, 32: 528–539, (2007). CR - [36] Kemperl J. and Maček J., “Precipitation of calcium carbonate from hydrated lime of variable reactivity, granulation and optical properties”, International Journal of Mineral Processing, 93: 84-88, (2009). CR - [37] Sirait M., Sinulingga K., Siregar N. and Sirega R.S.D., “Synthesis of hydroxyapatite from limestone by using precipitation method”, IOP Conf. Series: Journal of Physics: Conf. Series, 1462: (2020). CR - [38] Krishnan K. M., “Principles of Materials Characterization and Metrology”, Oxford University Press, United Kingdom, (2021). CR - [39] Thien L.T., Tu L.N.Q., Trung B.C. and Long N.Q., “Au nanoparticles loaded Hydroxyapatite catalyst prepared from waste eggshell: synthesis, characterization and application in VOC removal”, IOP Conf. Series: Earth and Environmental Science, 964: (2022). CR - [40] Lee H.L., Cheng Y.S., Yeh K.L., and Lee T., “A Novel Hydrate Form of Sodium Dodecyl Sulfate and Its Crystallization Process”, ACS Omega , 6: 15770−15781, (2021). CR - [41] Yu D.G., Zhu L.M., Christopher J., White B., Yang J.H., Wang X., Li Y. and Qian W., “Solid dispersions in the form of electrospun core-sheath nanofibers”, International Journal of Nanomedicine, 6: 3271–3280, (2011). CR - [42] Poralan G.M., Gambe1 J.E., Alcantara E.M. and Vequizo R.M., “X-ray diffraction and infrared spectroscopy analyses on the crystallinity of engineered biological hydroxyapatite for medical application”, IOP Conf. Series: Materials Science and Engineering, 79: (2015). CR - [43] Ragab H.S., Ibrahim F.A., Abdallah F., Al-Ghamdi A.A., El-Tantawy F., Radwan N. and Yakuphanoglu F., “Synthesis and In Vitro Antibacterial Properties of Hydroxyapatite Nanoparticles”, IOSR Journal of Pharmacy and Biological Sciences, 9: 77-85, (2014). CR - [44] Juliadmi D., Fauzi V.R., Gunawarman, Nur H. and Idris M.H., “Hydroxyapatite Coating on Titanium Alloy Ti-6Al-4V with Electrophoretic Deposition (EPD) for Dental Root Application”, International Journal on Advanced Science, Engineering and Information Technology 7:2152-2158, (2017). UR - https://doi.org/10.2339/politeknik.1674243 L1 - https://dergipark.org.tr/en/download/article-file/4764988 ER -