TY - JOUR T1 - Pestisit Tespiti için Sensör Optimizasyonlu Bir Elektronik Burun: Kirazlarda Diazinon'un YSA ve Genetik Algoritma Tabanlı Sınıflandırılması TT - A Sensor-Optimized Electronic Nose for Pesticide Detection: ANN and Genetic Algorithm-Based Classification of Diazinon in Cherries AU - Şimşek, Cemaleddin AU - Yılmaz, Ahmet PY - 2025 DA - September Y2 - 2025 DO - 10.31466/kfbd.1675914 JF - Karadeniz Fen Bilimleri Dergisi JO - KFBD PB - Giresun University WT - DergiPark SN - 2564-7377 SP - 1252 EP - 1263 VL - 15 IS - 3 LA - tr AB - Tarım, insan yaşamını sürdürmek için vazgeçilmez olan besin kaynaklarını sağlamak açısından hayati öneme sahiptir. Artan nüfusun taleplerini karşılamak ve yüksek verimli tarım elde etmek amacıyla, zirai pestisit kullanımı yaygın bir uygulama haline gelmiştir. Çeşitli pestisitler tarımsal verimliliği artırabilse de, çalışmalar bunların insan sağlığı üzerinde çeşitli etkilere sahip olabileceğini göstermiştir. Bu nedenle, bu maddelerin tespiti ve insan sağlığı üzerindeki etkilerinin en aza indirilmesi kritik öneme sahiptir. Bu çalışma, kirazlardaki Diazinon pestisit kalıntılarını tespit etmek için bir elektronik burun, yapay sinir ağları (YSA) ve genetik algoritmalar (GA) kullanarak etkili bir sınıflandırma yöntemi sunmaktadır. Piyasada kolayca bulunabilen 11 gaz sensörü kullanılarak bir elektronik burun sistemi geliştirilmiştir. Farklı seviyelerde pestisit kontaminasyonu olan ve olmayan kiraz örneklerinden elde edilen veriler, bir YSA sınıflandırıcısı ile sensör tepkilerini analiz etmek için kullanılmıştır. Ardından, gereken sensör sayısını en aza indirmek için GA kullanılmıştır. Sonuçlar, yalnızca 3 sensör kullanılarak bile %100'e varan sınıflandırma doğruluğunun elde edilebileceğini göstermektedir. Bu çalışma, zirai pestisit kalıntılarının tespiti için maliyet etkin ve yüksek doğruluklu bir yöntem sunarak mevcut literatüre önemli bir katkı sağlamaktadır. KW - Elektronik burun KW - Pestisit tespiti KW - Yapay sinir ağı KW - Genetik algoritma KW - Sınıflandırma N2 - Agriculture is vital for providing the indispensable food sources that sustain human life. To meet the demands of a growing population and achieve high-yield farming, the use of agricultural pesticides has become a widespread practice. While various pesticides can increase agricultural productivity, studies have shown they can also have diverse effects on human health. Therefore, the detection of these substances and the minimization of their impact on human health are crucial. This study introduces an effective classification method for detecting Diazinon pesticide residues in cherries using an electronic nose, artificial neural networks (ANN), and genetic algorithms (GA). An electronic nose system was developed using 11 commercially available gas sensors. Data obtained from cherry samples with varying levels of pesticide contamination, as well as pesticide-free samples, were used to analyze sensor responses with an ANN classifier. GA was then employed to minimize the number of sensors required. The results demonstrate that classification accuracy reaching 100% can be achieved using as few as 3 sensors. This study offers a cost-effective and highly accurate method for detecting agricultural pesticide residues, making a significant contribution to the existing literature. CR - Aktar, W., et al. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1-12. CR - Baietto, M., & Wilson, A. D. (2015). Electronic-nose applications for fruit identification, ripeness and quality grading. Sensors, 15(1), 899-931. http://dx.doi.org/10.3390/s150100899 CR - Biondi, E., et al. (2014). Electronic nose and electronic tongue for the detection of plant diseases: Review. Plant Disease, 98(9), 1044-1053. https://doi.org/10.1094/PDIS-01-14-0033-FE CR - Carvalho, F. P. (2017). Pesticides, environment, and food safety. Food and Energy Security, 6(2), 48-60. https://doi.org/10.1002/fes3.109 CR - Concina, I., et al. (2012). Early detection of microbial contamination in processed tomatoes by electronic nose. Food Control, 23(2), 406-413. https://doi.org/10.1016/j.foodcont.2011.07.032 CR - Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8(5), 1402-1419. https://doi.org/10.3390/ijerph8051402 CR - FAO. (2021). The State of Food and Agriculture 2021. Food and Agriculture Organization of the United Nations. CR - Ghasemi-Varnamkhasti, M., et al. (2011). Electronic nose as a non-destructive tool to characterize peach cultivars and to monitor their ripening stage during shelf-life. Postharvest Biology and Technology, 59(3), 245-251. https://doi.org/10.1016/j.postharvbio.2010.10.014 CR - Godfray, H. C. J., et al. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812-818. https://doi.org/10.1126/science.1185383 CR - Haddi, Z., et al. (2014). A portable electronic nose system for the identification of cannabis-based drugs. Sensors and Actuators B: Chemical, 190, 280-291. https://doi.org/10.1016/j.snb.2013.09.084 CR - Hassoun, M. H. (1995). Fundamentals of artificial neural networks. MIT press. CR - Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press. CR - Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: past, present, and future. Multimedia tools and applications, 80, 8091-8126. https://doi.org/10.1007/s11042-020-10139-y CR - Kiani, S., et al. (2016). A portable electronic nose as an expert system for aroma-based classification of saffron. Chemometrics and Intelligent Laboratory Systems, 156, 148-156. https://doi.org/10.1016/j.chemolab.2016.06.009 CR - Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. CR - Li, C., et al. (2019). Detection of pesticide residues on fruit surfaces using an electronic nose system with chemometric methods. Food Control, 96, 16-24. https://doi.org/10.1016/j.foodcont.2018.09.018 CR - Loutfi, A., et al. (2015). Electronic noses for food quality: A review. Journal of Food Engineering, 144, 103-111. https://doi.org/10.1016/j.jfoodeng.2014.08.024 CR - Mahmood, I., et al. (2016). Effects of pesticides on environment. Plant, Soil and Microbes, 1, 253-269. CR - Nicolopoulou-Stamati, P., et al. (2016). Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health, 4, 148. https://doi.org/10.3389/fpubh.2016.00148 CR - Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science, 144(1), 31-43. https://doi.org/10.1017/S002185960500571X CR - Pathange, L. P., et al. (2006). Non-destructive evaluation of apple maturity using an electronic nose system. Journal of Food Engineering, 77(4), 1018-1023. https://doi.org/10.1016/j.jfoodeng.2005.08.026 CR - Peris, M., & Escuder-Gilabert, L. (2009). A 21st century technique for food control: Electronic noses. Analytica Chimica Acta, 638(1), 1-15. https://doi.org/10.1016/j.aca.2009.02.018 CR - Popp, J., et al. (2013). Pesticide productivity and food security. Agronomy for Sustainable Development, 33(1), 243-255. https://doi.org/10.1007/s13593-012-0092-x CR - Pretty, J., et al. (2011). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability, 9(1), 5-24. https://doi.org/10.3763/ijas.2010.0515 CR - Röck, F., et al. (2008). Electronic nose: Current status and future trends. Chemical Reviews, 108(2), 705-725. https://doi.org/10.1021/cr068117q CR - Sankaran, S., et al. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72(1), 1-13. https://doi.org/10.1016/j.compag.2010.02.003 CR - Sharma, A., et al. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1(11), 1446. https://doi.org/10.1007/s42452-019-1485-1 CR - TOZLU, B. H. (2024). Electronic Detection of Pesticide Residue on Cherry Fruits. International Journal of Computational and Experimental Science and Engineering, 10(3). https://doi.org/10.22399/ijcesen.401 CR - Wijaya, D. R., et al. (2017). Low-cost electronic nose for classification of beef and pork using Naïve Bayes method. Modern Applied Science, 11(8), 35-46. https://doi.org/10.5539/mas.v11n8p35 CR - Wilson, A. D., & Baietto, M. (2009). Applications and advances in electronic-nose technologies. Sensors, 9(7), 5099-5148. http://dx.doi.org/10.3390/s90705099 CR - Yegnanarayana, B. (2009). Artificial neural networks. PHI Learning Pvt. Ltd. CR - Zhang, W., et al. (2018). Global pesticide use: Profile, trend, cost/benefit and more. Science of the Total Environment, 616-617, 1056-1065. https://doi.org/10.1016/j.scitotenv.2017.10.193 UR - https://doi.org/10.31466/kfbd.1675914 L1 - https://dergipark.org.tr/en/download/article-file/4772430 ER -