TY - JOUR T1 - Investigation of the Sandblasting Pressure Effect on the Wear Properties, Surface Roughness, and Shear Bond Strength of Resin Nanoceramic and Zirconia CAD/CAM Restorative Materials AU - Başpinar Alper, Seval AU - Tekçe, Neslihan AU - Yildirim, Elif Sevilay AU - İlgi Sancak, Elif PY - 2025 DA - April JF - Current Research in Dental Sciences JO - Curr Res Dent Sci. PB - Ataturk University WT - DergiPark SN - 2822-2555 SP - 121 EP - 127 VL - 35 IS - 2 LA - en AB - Objective: Investigation of the influence of sandblasting pressure on the wear properties, surface roughness, and bond strength of resin nanoceramic and zirconia materials.Methods: 80-specimens with dimensions of 14 × 14 × 2 mm were obtained from Lava-Ultimate and Katana-Zirconia CAD/CAM materials. Four groups were formed according to the sandblasting pressure (control, 1-bar, 2-bar, and 3-bar). Sandblasting treatment was performed with 50-µm Al2O3 from a distance of 10-mm for 10-seconds at a pressure of 1, 2, and 3-bar. The weight loss caused by sandblasting was calculated and converted to volume loss. The surface roughness was evaluated with a contact profilometer. A randomly selected one specimen from each group was scanned using a non-contact profilometer. Composite rods were bonded to the surface of the materials with dual-cure adhesive resin. The shear bond strength test was performed. The data were analyzed using the Shapiro-Wilk test and two-way analysis ANOVA (P<.05).Results: The highest volume difference values for Lava-Ultimate were obtained in Group-3 (2.914±0.458). The highest Ra values were observed in Group-3 for Lava-Ultimate (2.620±0.121) and Katana-Zirconia (0.770 ± 0.106). Lava-Ultimate exhibited higher volume loss and Ra values than Katana-Zirconia at all sandblasting pressures. However, it showed higher SBS values (16.61±3.31) only in Group-1 (P<.05).Conclusion: Increasing sandblasting pressure affected the amount of wear and Ra values of Lava-Ultimate, while for Katana-Zirconia it only affected the surface roughness values. The increase in sandblasting pressure did not influence the shear bond strength values.Keywords: Resin nanoceramic, sandblasting pressure, shear bond strength, surface roughness, wear, zirconia KW - Resin nanoceramic KW - sandblasting pressure KW - shear bond strength KW - surface roughness KW - wear KW - zirconia CR - 1. Baroudi K, Ibraheem SN. Assessment of chair-side computer-aided design and computer-aided manufacturing restorations: A review of the literature. J Int Oral Health. 2015;7(4):96-104. CR - 2. Belli R, Wendler M, De Ligny D, et al. Chairside CAD/CAM materials. Part 1: Measurement of elastic constants and microstructural characterization. Dent Mater. 2016;33(1):84-98. doi:10.1016/j.dental.2016.10.009 CR - 3. Lauvahutanon S, Takahashi H, Shiozawa M, et al. Mechanical properties of composite resin blocks for CAD/CAM. Dent Mater J. 2014;33(5):705-710. doi:10.4012/dmj.2014-208 CR - 4. Ruse ND, Sadoun MJ. Resin-composite blocks for dental CAD/CAM applications. J Dent Res. 2014;93(12):1232-4. doi:10.1177/0022034514553976 CR - 5. Acar O, Yilmaz B, Altintas SH, Chandrasekaran I, Johnston WM. Color stainability of CAD/CAM and nanocomposite resin materials. J Prosthet Dent. 2015;115(1):71-75. doi:10.1016/j.prosdent.2015.06.014 CR - 6. Christel P, Meunier A, Heller M, Torre JP, Peille CN. Mechanical properties and short‐term in vivo evaluation of yttrium‐oxide‐partially‐stabilized zirconia. J Biomed Mater Res. 1989;23(1):45-61. doi:10.1002/jbm.820230105 CR - 7. Hooshmand T, Van Noort R, Keshvad A. Bond durability of the resin-bonded and silane treated ceramic surface. Dent Mater. 2002;18(2):179-188. doi:10.1016/s0109-5641(01)00047-1 CR - 8. Peumans M, Hikita K, De Munck J, et al. Effects of ceramic surface treatments on the bond strength of an adhesive luting agent to CAD–CAM ceramic. J Dent. 2006;35(4):282-288. doi:10.1016/j.jdent.2006.09.006 CR - 9. Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent. 2015;114(4):587-593. doi:10.1016/j.prosdent.2015.04.016 CR - 10. Vargas MA, Bergeron C, Diaz-Arnold A. Cementing all-ceramic restorations. J Am Dent Assoc. 2011;142:20S-24S. doi:10.14219/jada.archive.2011.0339 CR - 11. Yang B, Barloi A, Kern M. Influence of air-abrasion on zirconia ceramic bonding using an adhesive composite resin. Dent Mater. 2009;26(1):44-50. doi:10.1016/j.dental.2009.08.008 CR - 12. Blatz MB, Sadan A, Kern M. Resin-ceramic bonding: A review of the literature. J Prosthet Dent. 2003;89(3):268-274. doi:10.1067/mpr.2003.50 CR - 13. De Mello CC, Bitencourt SB, Santos DMD, Pesqueira AA, Pellizzer EP, Goiato MC. The Effect of Surface Treatment on Shear Bond Strength between Y‐TZP and Veneer Ceramic: A Systematic Review and Meta‐Analysis. J Prosthodont. 2017;27(7):624-635.doi:10.1111/jopr.12727 CR - 14. Papia E, Larsson C, Du Toit M, Von Steyern PV. Bonding between oxide ceramics and adhesive cement systems: A systematic review. J Biomed Mater Res B Appl Biomater. 2013;102(2):395-413. doi:10.1002/jbm.b.33013 CR - 15. Ersu B, Yuzugullu B, Yazici AR, Canay S. Surface roughness and bond strengths of glass-infiltrated alumina-ceramics prepared using various surface treatments. J Dent. 2009;37(11):848-856. doi:10.1016/j.jdent.2009.06.017 CR - 16. Saker S, Ibrahim F, Özcan M. Effect of different surface treatments on adhesion of In-Ceram Zirconia to enamel and dentin substrates. J Adhes Dent. 2013;15(4):369-376. doi:10.3290/j.jad.a29013 CR - 17. Shimoe S, Tanoue N, Kusano K, Okazaki M, Satoda T. Influence of air-abrasion and subsequent heat treatment on bonding between zirconia framework material and indirect composites. Dent Mater J. 2012;31(5):751-757. doi:10.4012/dmj.2012-077 CR - 18. Amaral R, Özcan M, Bottino MA, Valandro LF. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: The effect of surface conditioning. Dent Mater. 2005;22(3):283-290. doi:10.1016/j.dental.2005.04.021 CR - 19. Zhang Y, Lawn BR, Rekow ED, Thompson VP. Effect of sandblasting on the long‐term performance of dental ceramics. J Biomed Mater Res B Appl Biomater. 2004;71B(2):381-386. doi:10.1002/jbm.b.30097 CR - 20. Moravej‐Salehi E, Moravej‐Salehi E, Valian A. Surface topography and bond strengths of feldspathic porcelain prepared using various sandblasting pressures. J Investig Clin Dent. 2015;7(4):347-354. doi:10.1111/jicd.12171 CR - 21. Tzanakakis EGC, Tzoutzas IG, Koidis PT. Is there a potential for durable adhesion to zirconia restorations? A systematic review. J Prosthet Dent. 2015;115(1):9-19. doi:10.1016/j.prosdent.2015.09.008 CR - 22. Kim JE, Kim JH, Shim JS, Roh BD, Shin Y. Effect of air-particle pressures on the surface topography and bond strengths of resin cement to the hybrid ceramics. Dent Mater J. 2017;36(4):454-460. doi:10.4012/dmj.2016-293 CR - 23. Gundogdu M, Aladag L. Effect of adhesive resin cements on bond strength of ceramic core materials to dentin. Niger J Clin Pract. 2018;21(3):367. doi:10.4103/njcp.njcp_10_17 CR - 24. Yoshihara K, Nagaoka N, Maruo Y, et al. Sandblasting may damage the surface of composite CAD–CAM blocks. Dent Mater. 2017;33(3):e124-e135. doi:10.1016/j.dental.2016.12.003 CR - 25. Strasser T, Preis V, Behr M, Rosentritt M. Roughness, surface energy, and superficial damages of CAD/CAM materials after surface treatment. Clin Oral Investig. 2018;22(8):2787-2797. doi:10.1007/s00784-018-2365-6 CR - 26. Kwon SM, Min BK, Kim YK, Kwon TY. Influence of sandblasting particle size and pressure on resin bonding durability to zirconia: A Residual Stress study. Materials. 2020;13(24):5629. doi:10.3390/ma13245629 CR - 27. Zhao P, Yu P, Xiong Y, Yue L, Arola D, Gao S. Does the bond strength of highly translucent zirconia show a different dependence on the airborne-particle abrasion parameters in comparison to conventional zirconia? J Prosthodont Res. 2019;64(1):60-70. doi:10.1016/j.jpor.2019.04.008 CR - 28. Yanıkoğlu N, Özdemir H, Yıldırım MP, Yılmaz CB. Effect of different pressure and size of powder particules used in sandblasting on bond strength of zirconium and resin cement. J Dent Fac Atatürk Uni. 2017;27(2):107-112. doi:10.17567/ataunidfd.321462 CR - 29. He M, Zhang Z, Zheng D, Ding N, Liu Y. Effect of sandblasting on surface roughness of zirconia-based ceramics and shear bond strength of veneering porcelain. Dent Mater J. 2014;33(6):778-785. doi:10.4012/dmj.2014-002 CR - 30. Re D, Augusti D, Augusti G, Giovannetti A. Early bond strength to low-pressure sandblasted zirconia: evaluation of a self-adhesive cement. Eur J Esthet Dent. 2012;7(2):164-175 https://europepmc.org/article/MED/22645731 CR - 31. Su N, Yue L, Liao Y, et al. The effect of various sandblasting conditions on surface changes of dental zirconia and shear bond strength between zirconia core and indirect composite resin. J Adv Prosthodont. 2015;7(3):214. doi:10.4047/jap.2015.7.3.214 CR - 32. Pollington S, Fabianelli A, Van Noort R. Microtensile bond strength of a resin cement to a novel fluorcanasite glass-ceramic following different surface treatments. Dent Mater. 2010;26(9):864-872. doi:10.1016/j.dental.2010.04.011 CR - 33. Ludovichetti FS, Trindade FZ, Werner A, Kleverlaan CJ, Fonseca RG. Wear resistance and abrasiveness of CAD-CAM monolithic materials. J Prosthet Dent. 2018;120(2):318.e1-318.e8. doi:10.1016/j.prosdent.2018.05.011 UR - https://dergipark.org.tr/en/pub/currresdentsci/issue//1677540 L1 - https://dergipark.org.tr/en/download/article-file/4779551 ER -