TY - JOUR T1 - Robotic Livestock Breeding: A Historical and Technological Rewiew TT - Robotic Livestock Breeding: A Historical and Technological Rewiew AU - Demir, Ayşe Özge AU - Hakan, Sinan PY - 2025 DA - June Y2 - 2025 JF - Şırnak Üniversitesi Fen Bilimleri Dergisi PB - Sırnak University WT - DergiPark SN - 2667-7083 SP - 76 EP - 94 IS - 8 LA - en AB - Aristotle (384–323 BCE) once said, “If every tool could work by itself, by appropriate command or in a predetermined way… then there would be no need for workers or slaves.” This early philosophical insight significantly anticipates our current era, in which autonomous tools, powered by robotics and artificial intelligence (AI), increasingly replace the need for human labor. Yet robotics progressed slowly until the Industrial Revolution, and was only marginally developed by modern standards until the 13th century. One notable exception is the work of Ismail al-Jazari (1136, Upper Mesopotamia – 1206, Cizre), who is generally considered the father of cybernetics but is not widely recognized in Western scientific discourse. Al-Jazari laid out the basic principles of cybernetics, the field concerned with the control and regulation of complex systems, both living and nonliving. He is credited with designing and operating what can be considered the first robot, and his work is believed to have influenced Leonardo da Vinci (1452-1519) (Aleksandr, 1999). Living in the Cizre and Diyarbakır regions, Al-Jazari documented approximately 50 mechanical devices and instructions for their construction (Anonymous, 2025b). Today, the field of robotics has advanced rapidly. One important application area is robotic animal husbandry, often described as the “farming of the future” through the lens of artificial intelligence. This field integrates robotics, AI-enabled systems, sensors, automation, and the Internet of Things (IoT) into livestock management to improve animal welfare, reduce labor demands, and increase overall productivity. KW - AI KW - IoT KW - Animal wefare KW - Reproductive assistance KW - Robotic livestock N2 - Robotik hayvancılık çiftçiliğinin gelişimi, yapay zeka (AI), otomasyon ve Nesnelerin İnterneti (IoT) teknolojilerinin modern tarıma hızla entegre edilmesini yansıtır. Bu inceleme, erken mekanizasyondan gelişmiş AI destekli yönetim araçlarına kadar önemli kilometre taşlarını vurgulayarak, hayvancılıkta robotik sistemlerin tarihsel evrimini araştırır. Robotik sağım, besleme, üreme yardımı, iklim kontrolü ve otonom sürü yönetimi dahil olmak üzere on iki önemli teknolojik alan açıklanmaktadır. İnceleme ayrıca robotik hayvancılık sistemlerinin avantajlarını, zorluklarını ve gelecekteki yönlerini değerlendirerek sürdürülebilirlik, üretkenlik ve hayvan refahını vurgular CR - Alvarenga, F. A. P., Borges, I., Palkovič, L., Rodina, J., Oddy, V. H., & Dobos, R. (2016). Using a three-axis accelerometer to identify and classify sheep behaviour at pasture. Applied Animal Behaviour Science, 181, 91–99. https://doi.org/10.1016/j.applanim.2016.05.026 CR - Banhazi, T. M., Lehr, H., Black, J. L., Crabtree, H., Schofield, C. P., Tscharke, M., & Berckmans, D. (2012). Precision livestock farming: An international review of scientific and commercial aspects. International Journal of Agricultural and Biological Engineering, 5(3), 1–9. CR - Berckmans, D. (2014). Precision livestock farming technologies for welfare management in intensive livestock systems. Revue Scientifique et Technique (International Office of Epizootics), 33(1), 189–196. https://doi.org/10.20506/rst.33.1.2273 CR - Bhuiyan, M. R., & Wree, P. (2023). Animal behavior for chicken identification and monitoring the health condition using computer vision: A systematic review. IEEE Access, PP(99), 1–1. https://doi.org/10.1109/ACCESS.2023.3331092 CR - Caja, G., Carné, S., Salama, A. A. K., Ait-Saidi, A., Rojas-Olivares, M. A., Rovai, M., Capote, J., Castro, N., Argüello, A., Ayadi, M., Aljumaah, R., & Alshaikh, M. A. (2014). State-of-the-art electronic identification techniques and applications in goats. Small Ruminant Research, 121, 42–50. https://doi.org/10.1016/j.smallrumres.2014.05.012 CR - Caja, G., Castro-Costa, A., & Knight, C. H. (2016). Engineering to support wellbeing of dairy animals. Journal of Dairy Research, 83(2), 136–147. https://doi.org/10.1017/S0022029916000250 CR - Campbell, M., Miller, P., Díaz-Chito, K., Hong, X., McLaughlin, N., Parvinzamir, F., Martinez-del-Rincon, J., & O'Connell, N. E. (2024). A computer vision approach to monitor activity in commercial broiler chickens using trajectory-based clustering analysis. Computers and Electronics in Agriculture, 217, 108591. https://doi.org/10.1016/j.compag.2023.108591 CR - Cappai, M. G., Picciau, M., Nieddu, G., Bitti, M. P. L., & Pinna, W. (2014). Long term performance of RFID technology in the large scale identification of small ruminants through electronic ceramic boluses: Implications for animal welfare and regulation compliance. Small Ruminant Research, 117(2–3), 169–175. https://doi.org/10.1016/j.smallrumres.2013.12.022 CR - Chaurasia, A. (2024). IoT-based smart pet feeder system for poultry farms. Vellore Institute of Technology University. https://doi.org/10.13140/RG.2.2.34066.57285 CR - Chebli, Y., El Otmani, S., Hornick, J.-L., Bindelle, J., Cabaraux, J.-F., & Chentouf, M. (2022). Estimation of grazing activity of dairy goats using accelerometers and Global Positioning System. Sensors, 22(15), 5629. https://doi.org/10.3390/s22155629 CR - Ciurea, A. V., & Bratu, B.-G. (2022). Leonardo da Vinci (1452–1519): Overview of neuroanatomy contribution. Revista Medico-Chirurgicală, December 2022. https://doi.org/10.22551/MSJ.2022.04.19 CR - Cora, Ö. N., & Şahin, M. E. (2020). Turkish Journal of Electromechanics & Energy in its fifth year, and portrait of a pioneer in engineering: Al-Jazari. Turkish Journal of Electromechanics and Energy, 5(1), 1–2. CR - Dilaver, H., & Dilaver, K. F. (2024). Robotics systems and artificial intelligence applications in livestock farming. Journal of Animal Science and Economics, 3(2), 63–72. https://doi.org/10.5281/zenodo.12518170 CR - Dos Santos, C. A., Landim, N., de Araújo, H. X., & Paim, T. (2022). Automated systems for estrous and calving detection in dairy cattle. AgriEngineering, 4(2), 475–482. https://doi.org/10.3390/agriengineering4020031 CR - Džermeikaitė, K., Bačėninaitė, D., & Antanaitis, R. (2023). Innovations in cattle farming: Application of innovative technologies and sensors in the diagnosis of diseases. Animals, 13(5), 780. https://doi.org/10.3390/ani13050780 CR - Ebertz, P., Krommweh, M. S., & Büscher, W. (2019). Feasibility study: Improving floor cleanliness by using a robot scraper in group-housed pregnant sows and their reactions on the new device. Animals, 9(4), 185. https://doi.org/10.3390/ani9040185 CR - Elischer, M. F., Arceo, M. E., Karcher, E. L., & Siegford, J. M. (2013). Validating the accuracy of activity and rumination monitor data from dairy cows housed in a pasture-based automatic milking system. Journal of Dairy Science, 96, 6412–6422. https://doi.org/10.3168/jds.2013-6790 CR - Gabel, J. (2018, February 13). Fitbits for animals: New data could revolutionise Aussie farming. La Trobe University News. https://www.latrobe.edu.au/news/articles/2018/release/fitbits-for-animals CR - Grinter, L. N., Campler, M. R., & Costa, J. H. C. (2019). Technical note: Validation of a behavior-monitoring collar’s precision and accuracy to measure rumination, feeding, and resting time of lactating dairy cows. Journal of Dairy Science, 102, 3487–3494. https://doi.org/10.3168/jds.2018-15563 CR - Hofmann, W., Neal, M., Woodward, S., & O'Neill, T. (2022). GPS technology as a tool to aid pasture management on dairy farms. Journal of New Zealand Grasslands, 84, Article 3561. https://doi.org/10.33584/jnzg.2022.84.3561 CR - Kamboj, A., Ji, T., & Driggs-Campbell, K. (2022). Examining audio communication mechanisms for supervising fleets of agricultural robots. arXiv. https://doi.org/10.48550/arXiv.2208.10455 CR - Long, N. K., Sammut, K., Sgarioto, D., Garratt, M., & Abbass, H. (2020). A comprehensive review of shepherding as a bio-inspired swarm-robotics guidance approach (arXiv:1912.07796v4). arXiv. https://arxiv.org/pdf/1912.07796 CR - Løvendahl, P., & Sørensen, L. P. (2016). Frequently recorded sensor data may correctly provide health status of cows if data are handled carefully and errors are filtered away. Biotechnology, Agronomy, Society and Environment, 20(1), 3–12. https://doi.org/10.25518/1780-4507.12562 CR - Meijer, N., Filter, M., Józwiak, Á., Willems, D., Frewer, L., Fischer, A., Liu, N., Bouzembrak, Y., Valentin, L., Fuhrmann, M., Mylord, T., Kerekes, K., Farkas, Z., Hadjigeorgiou, E., Clark, B., Coles, D., Comber, R., Simpson, E., & Marvin, H. (2020). Determination and metrics for emerging risks identification (DEMETER): Final report (EFSA Supporting Publication 2020:EN-1889). European Food Safety Authority. https://doi.org/10.2903/sp.efsa.2020.EN-1889 CR - Nielsen, P. P., Fontana, I., Sloth, K. H., Guarino, M., & Blokhuis, H. (2018). Technical note: Validation and comparison of 2 commercially available activity loggers. Journal of Dairy Science, 101, 5449–5453. https://doi.org/10.3168/jds.2017-13784 CR - Ozentürk, U., Chen, Z., Jamone, L., & Versace, E. (2023). Robotics for poultry farming: Challenges and opportunities. arXiv preprint. https://arxiv.org/abs/2311.05069 CR - Ozentürk, U., Chen, Z., Jamone, L., & Versace, E. (2024). Robotics for poultry farming: Challenges and opportunities. Computers and Electronics in Agriculture, 226, 109411. https://doi.org/10.1016/j.compag.2024.109411 CR - Pastell, M., Aisla, A. M., Hautala, M., Poikalainen, V., Praks, J., Veermäe, I., & Ahokas, J. (2006). Contactless measurement of cow behavior in a milking robot. Behavior Research Methods, 38(3), 479–486. https://doi.org/10.3758/BF03192802 CR - Rankin, S. A., Bradley, R. L., Miller, G., & Mildenhall, K. B. (2017). A 100-year review: A century of dairy processing advancements—Pasteurization, cleaning and sanitation, and sanitary equipment design. Journal of Dairy Science, 100(12), 9903–9915. https://doi.org/10.3168/jds.2017-13187 CR - Rutten, C. J., Velthuis, A. G. J., Steeneveld, W., & Hogeveen, H. (2013). Invited review: Sensors to support health management on dairy farms. Journal of Dairy Science, 96(4), 1928–1952. https://doi.org/10.3168/jds.2012-6107 CR - Sorensen, L. P., Bjerring, M., & Lovendahl, P. (2016). Monitoring individual cow udder health in automated milking systems using online somatic cell counts. Journal of Dairy Science, 99, 608–620. https://doi.org/10.3168/jds.2014-8823 CR - Sørensen, P. E., Van Den Broeck, W., Kiil, K., Jasinskyte, D., Moodley, A., Garmyn, A., ... & Butaye, P. (2020). New insights into the biodiversity of coliphages in the intestine of poultry. Scientific Reports, 10(1), 15220. https://doi.org/10.1038/s41598-020-72183-w CR - Sun, Z., Tao, W., Gao, M., Zhang, M., Song, S., & Wang, G. (2024). Broiler health monitoring technology based on sound features and random forest. Engineering Applications of Artificial Intelligence, 135, 108849. https://doi.org/10.1016/j.engappai.2024.108849 CR - Tangorra, F. M., Buoio, E., Calcante, A., Bassi, A., & Costa, A. (2024). Internet of Things (IoT): Sensors Application in Dairy Cattle Farming. Animals, 14(21), 3071. https://doi.org/10.3390/ani14213071 CR - Tse, C., Barkema, H. W., DeVries, T. J., Rushen, J., & Pajor, E. A. (2017). Effect of transitioning to automatic milking systems on producers' perceptions of farm management and cow health in the Canadian dairy industry. Journal of Dairy Science, 100(3), 2404–2414. https://doi.org/10.3168/jds.2016-11659 CR - Vaintrub, M. O., Levit, H., Chincarini, M., Fusaro, I., Giammarco, M., & Vignola, G. (2021). Precision livestock farming, automats and new technologies: Possible applications in extensive dairy sheep farming. Animal, 15, 100143. https://doi.org/10.1016/j.animal.2020.100143 CR - Wagner, N., Antoine, V., Richard, M.-M., Lardy, R., Silberberg, M., Koko, J., & Veissier, I. (2020). Machine learning to detect behavioural anomalies in dairy cows under subacute ruminal acidosis. Computers and Electronics in Agriculture, 170, 105233. https://doi.org/10.1016/j.compag.2020.105233 CR - Zambelis, A., Wolfe, T., & Vasseur, E. (2019). Technical note: Validation of an ear-tag accelerometer to identify feeding and activity behaviors of tiestall-housed dairy cattle. Journal of Dairy Science, 102, 4536–4540. https://doi.org/10.3168/jds.2018-15766 CR - Zhou, D., Zhou, Y., He, P., Yu, L., Pan, J., Chai, L., & Lin, H. (2023). Development of an automatic weighing platform for monitoring bodyweight of broiler chickens in commercial production. Frontiers of Agricultural Science and Engineering, 10(3), 363–373. https://doi.org/10.15302/JFASE2023510 UR - https://dergipark.org.tr/en/pub/sufbd/issue//1678412 L1 - https://dergipark.org.tr/en/download/article-file/4783237 ER -