TY - JOUR T1 - Long Memory Analysis and Directional Return Forecasting in Cryptocurrency Markets: An Application of the PATSOS Method AU - Sak, Ahmet Furkan AU - Dalgar, Hüseyin PY - 2025 DA - September Y2 - 2025 DO - 10.30798/makuiibf.1678534 JF - Journal of Mehmet Akif Ersoy University Economics and Administrative Sciences Faculty JO - MAKU IIBFD PB - Burdur Mehmet Akif Ersoy University WT - DergiPark SN - 2149-1658 SP - 1130 EP - 1152 VL - 12 IS - 3 LA - en AB - This study aims to investigate the volatility dynamics of five major cryptocurrencies (Bitcoin, Ethereum, Binance Coin, Solana, and Ripple) to determine whether they exhibit long memory properties, reveal their market efficiency, and perform directional return forecasts using PATSOS, a hybrid machine learning method. This study uses daily data on cryptocurrencies from 2014 to 2022. According to the study results, long memory in volatility is found in the return series of Bitcoin, Binance Coin, Solana, and Ripple. Therefore, this finding reveals that the Efficient Markets Hypothesis does not hold for these cryptocurrencies’ return series, except Ethereum. Based on the tests, the most appropriate models for predicting volatility are HYGARCH(1, d, 1) for Bitcoin, IGARCH(1, 1) for Ethereum, FIGARCH(1, d, 0) for Binance Coin, FIGARCH(1, d, 1) and FIAPARCH(1, d, 1) for Solana and Ripple. Predicting future prices using past price movements is possible in these inefficient cryptocurrencies. In this context, we conduct return forecasts using the PATSOS method, which yields successful results in non-linear data. As a result, the PATSOS method produces lower RMSE, MSE, and MAE values and higher accuracy rates than the ANFIS method for all cryptocurrencies in the analysis. These findings highlight the effectiveness of hybrid models in capturing the non-linear structure of cryptocurrency returns. KW - PATSOS KW - Cryptocurrencies KW - Volatility Modelling KW - Long Memory KW - Market Efficiency CR - Addai, S. (2016). Financial forecasting using machine learning [Doctoral dissertation, University of Cape Town]. ResearchGate. https://doi.org/10.13140/RG.2.1.1186.0083 CR - Aharon, D. Y., Butt, H. A., Jaffri, A., & Nichols, B. (2023). Asymmetric volatility in the cryptocurrency market: New evidence from models with structural breaks. International Review of Financial Analysis, 87, 102651. https://doi.org/10.1016/j.irfa.2023.102651 CR - Al‐Yahyaee, K. H., Mensi, W., & Yoon, S. M. (2018). Efficiency, multifractality, and the long‐memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets. Finance Research Letters, 27, 228–234. https://doi.org/10.1016/j.frl.2018.03.017 CR - Aslam, F., Aziz, S., Nguyen, D. K., Mughal, K. S., & Khan, M. (2020). On the efficiency of foreign exchange markets in times of the COVID‐19 pandemic. Technological Forecasting and Social Change, 161, 120261. https://doi.org/10.1016/j.techfore.2020.120261 CR - Assaf, A., Bhandari, A., Charif, H., & Demir, E. (2022). Multivariate long memory structure in the cryptocurrency market: The impact of COVID‐19. International Review of Financial Analysis, 82, 102132. https://doi.org/10.1016/j.irfa.2022.102132 CR - Atsalakis, G., & Valavanis, K. (2009). Forecasting stock market short‐term trends using a neuro‐fuzzy based methodology. Expert Systems with Applications, 36, 10696–10707. https://doi.org/10.1016/j.eswa.2009.02.043 CR - Atsalakis, G. S., Atsalaki, I. G., Pasiouras, F., & Zopounidis, C. (2019). Bitcoin price forecasting with neuro‐fuzzy techniques. European Journal of Operational Research, 276(2), 770–780. https://doi.org/10.1016/j.ejor.2019.01.040 CR - Awoke, T., Minakhi, R., Mohanty, L., & Satapathy, S. C. (2020). Bitcoin price prediction and analysis using deep learning models. In Advances in intelligent systems and computing (Vol. 134, pp. 630–640). Springer. https://doi.org/10.1007/978-981-15-5397-4_63 CR - Baillie, R. T., Bollerslev, T., & Mikkelsen, H. O. (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74(1), 3–30. https://doi.org/10.1016/S0304-4076(95)01749-6 CR - Bariviera, A. F. (2017). The inefficiency of Bitcoin revisited: A dynamic approach. Economics Letters, 161, 1–4. https://doi.org/10.1016/j.econlet.2017.09.013 CR - Böhme, R., Christin, N., Edelman, B., & Moore, T. (2015). Bitcoin: Economics, technology, and governance. Journal of Economic Perspectives, 29(2), 213–238. https://doi.org/10.1257/jep.29.2.213 CR - Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327. https://doi.org/10.1016/0304-4076(86)90063-1 CR - Bollerslev, T., & Mikkelsen, H. O. (1996). Modeling and pricing long-memory in stock market volatility. Journal of Econometrics, 73(1), 151–184. https://doi.org/10.1016/0304-4076(95)01736-4 CR - Bouri, E., Gil‐Alana, L. A., Gupta, R., & Roubaud, D. (2019). Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks. International Journal of Finance & Economics, 24(1), 412–426. https://doi.org/10.1002/ijfe.1670 CR - Bouri, E., Molnar, P., Azzi, G., Roubaud, D., & Hagfors, L. I. (2017). On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier? Finance Research Letters, 20, 192–198. https://doi.org/10.1016/j.frl.2016.09.025 CR - Budree, A., & Nyathi, T. N. (2023). Can cryptocurrency be a payment method in a developing economy? Journal of Electronic Commerce in Organizations, 21(1), 1–21. https://doi.org/10.4018/jeco.320223 CR - Caporale, G. M., Rubio-Bezares, A., & Gil-Alana, L. A. (2024). Persistence in European stock market returns and volatility. International Journal of Business and Economics, 9(1), 56–66. https://doi.org/10.58885/ijbe.v09i1.56.gc CR - Cavalcante, J., & Assaf, A. (2004). Long range dependence in the returns and volatility of the Brazilian stock market. European Review of Economics and Finance, 3, 5-22. CR - Cavalli, S., & Amoretti, M. (2021). CNN‐based multivariate data analysis for Bitcoin trend prediction. Applied Soft Computing Journal, 101, 107065. https://doi.org/10.1016/j.asoc.2020.107065 CR - Charfeddine, L., & Maouchi, Y. (2019). Are shocks on the returns and volatility of cryptocurrencies really persistent? Finance Research Letters, 28, 423–430. https://doi.org/10.1016/j.frl.2018.06.017 CR - Chen, H., Wei, N., Wang, L., Mobarak, W., Albahar, M. A., & Shaikh, Z. A. (2024). The role of blockchain in finance beyond cryptocurrency: Trust, data management, and automation. IEEE Access, 12, 64861–64885. https://doi.org/10.1109/access.2024.3395918 CR - Chen, W., Xu, H., Jia, L., & Gao, Y. (2021). Machine learning model for Bitcoin exchange rate prediction using economic and technology determinants. International Journal of Forecasting, 37(1), 28–43. https://doi.org/10.1016/j.ijforecast.2020.02.008 CR - , Z., Li, C., & Sun, W. (2020). Bitcoin price prediction using machine learning: An approach to sample dimension engineering. Journal of Computational and Applied Mathematics, 365, 112395. https://doi.org/10.1016/j.cam.2019.112395 CR - CoinMarketCap. (2022). Cryptocurrency prices by market cap. CoinMarketCap. Retrieved March 2, 2022, from https://coinmarketcap.com/ CR - Çevik, E. İ., & Topaloğlu, G. (2014). Volatilitede uzun hafıza ve yapısal kırılma: Borsa İstanbul örneği. Balkan Sosyal Bilimler Dergisi, 3(6), 40–55. CR - Davidson, J. (2004). Moment and memory properties of linear conditional heteroscedasticity models, and a new model. Journal of Business & Economic Statistics, 22, 16–29. https://doi.org/10.1198/073500103288619359 CR - Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation. Econometrica, 50, 987–1008. https://doi.org/10.2307/1912773 CR - Fakhfekh, M., & Jeribi, A. (2020). Volatility dynamics of cryptocurrencies’ returns: Evidence from asymmetric and long memory GARCH models. Research in International Business and Finance, 51, 101075. https://doi.org/10.1016/j.ribaf.2019.101075 CR - Fama, E. (1965). The behavior of stock market prices. Journal of Business, 38, 34–105. https://doi.org/10.1086/294743 CR - Festic, M., Kavkler, A., & Dajčman, S. (2012). Long memory in the Croatian and Hungarian stock market returns. Journal of Economics and Business, 30(1), 115–139. CR - Greaves, A., & Au, B. (2015). Using the Bitcoin transaction graph to predict the price of Bitcoin [Unpublished class project]. Stanford University, CS224W: Analysis of Networks. Retrieved from https://snap.stanford.edu/class/cs224w-2015/projects_2015/Using_the_Bitcoin_Transaction_Graph_to_Predict_the_Price_of_Bitcoin.pdf CR - Guiu, J. G., i Ribé, E. G., i Mansilla, E. B., & i Fàbrega, X. L. (1999). Automatic diagnosis with genetic algorithms and case-based reasoning. Artificial Intelligence in Engineering, 13(4), 367–372. https://doi.org/10.1016/S0954-1810(99)00009-6 CR - Guo, T., Bifet, A., & Antulov-Fantulin, N. (2018). Bitcoin volatility forecasting with a glimpse into buy and sell orders. In 2018 IEEE International Conference on Data Mining (ICDM) (pp. 989–994). IEEE. https://doi.org/10.1109/ICDM.2018.00123 CR - Gülcü, A., & Çalişkan, S. (2020). Clustering electricity market participants via FRM models. Intelligent Decision Technologies, 14(4), 481–492. https://doi.org/10.3233/IDT-200092 CR - Hagenau, M., Liebmann, M., & Neumann, D. (2013). Automated news reading: Stock price prediction based on financial news using context‐capturing features. Decision Support Systems, 55(3), 685–697. https://doi.org/10.1016/j.dss.2013.02.006 CR - Hegazy, O., Soliman, O. S., & Salam, M. A. (2013). A machine learning model for stock market prediction. arXiv preprint, 4(12), 17–23. https://doi.org/10.48550/arXiv.1402.7351 CR - Horobet, A., Belascu, L., & Barsan, A.-M. (2016). Exchange rate volatility in the Balkans and Eastern Europe: Implications for international investments. In A. Karasavvoglou, Z. Aranđelović, S. Marinković, & P. Polychronidou (Eds.), The first decade of living with the global crisis (pp. 137–164). Springer. https://doi.org/10.1007/978-3-319-24267-5_11 CR - Ibrahim, A., Hussin, S. A. S., Zahid, Z., & Khairi, S. (2018). Evaluation of long memory on the Malaysia exchange rate market. The Journal of Social Sciences Research, Special Issue 6, 653–656. https://doi.org/10.32861/jssr.spi6.653.656 CR - Jang, J. S. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665–685. https://doi.org/10.1109/21.256541 CR - Jiang, X. (2020). Bitcoin price prediction based on deep learning methods. Journal of Mathematical Finance, 10(1), 132–139. http://doi.org/10.4236/jmf.2020.101009 CR - Kapur, G., Manohar, S., Mittal, A., Jain, V., & Trivedi, S. (2024). Cryptocurrency price fluctuation and time series analysis through candlestick pattern of Bitcoin and Ethereum using machine learning. International Journal of Quality & Reliability Management, 41(8), 2055–2074. https://doi.org/10.1108/ijqrm-12-2022-0363 CR - Karaatlı, M., Güngör, İ., Demir, Y., & Kalaycı, Ş. (2005). Hisse senedi fiyat hareketlerinin yapay sinir ağları yöntemi ile tahmin edilmesi. Yönetim ve Ekonomi Araştırmaları Dergisi, 3(3), 38–48. CR - Katsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of GARCH models. Economics Letters, 158, 3–6. https://doi.org/10.1016/j.econlet.2017.06.023 CR - Khan, Z. H., Alin, T. S., & Hussain, M. A. (2011). Price prediction of share market using artificial neural network (ANN). International Journal of Computer Applications, 22(2), 42–47. http://doi.org/10.5120/2552-3497 CR - Khuntia, S., & Pattanayak, J. K. (2020). Adaptive long memory in volatility of intra-day Bitcoin returns and the impact of trading volume. Finance Research Letters, 32, 101077. https://doi.org/10.1016/j.frl.2018.12.025 CR - Kılıç, R. (2004). On the long memory properties of emerging capital markets: Evidence from Istanbul Stock Exchange. Applied Financial Economics, 14(13), 915–922. http://doi.org/10.1080/0960310042000233638 CR - Lahmiri, S., & Bekiros, S. (2020). Intelligent forecasting with machine learning trading systems in chaotic intraday Bitcoin market. Chaos, Solitons & Fractals, 133, 109641. https://doi.org/10.1016/j.chaos.2020.109641 CR - Liu, M., Li, G., Li, J., Zhu, X., & Yao, Y. (2021). Forecasting the price of Bitcoin using deep learning. Finance Research Letters, 40, 101755. https://doi.org/10.1016/j.frl.2020.101755 CR - Liu, Y., & Tsyvinski, A. (2018). Risks and returns of cryptocurrency. National Bureau of Economic Research. https://doi.org/10.2139/ssrn.3226952 CR - Malkiel, B. G. (2003). The efficient market hypothesis and its critics. Journal of Economic Perspectives, 17(1), 59–82. https://doi.org/10.1257/089533003321164958 CR - McNally, S., Roche, J., & Caton, S. (2018). Predicting the price of bitcoin using machine learning. In 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP) (pp. 339–343). IEEE. https://doi.org/10.1109/PDP2018.2018.00060 CR - Mensi, W., Al-Yahyaee, K. H., & Kang, S. H. (2019). Structural breaks and double long memory of cryptocurrency prices: A comparative analysis from Bitcoin and Ethereum. Finance Research Letters, 29, 222–230. https://doi.org/10.1016/j.frl.2018.07.011 CR - Münyas, T., & Kadooğlu-Aydın, G. (2023). Etkin piyasa hipotezi ve kripto para piyasaları üzerine bir uygulama. Alanya Akademik Bakış Dergisi, 7(3), 1203–1216. https://doi.org/10.29023/alanyaakademik.1240173 CR - Nadarajah, S., Mba, J. C., Rakotomarolahy, P., & Ratolojanahary, H. T. J. E. (2025). Ensemble learning and an adaptive neuro-fuzzy inference system for cryptocurrency volatility forecasting. Journal of Risk and Financial Management, 18(2), 52. https://doi.org/10.3390/jrfm18020052 CR - Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Bitcoin.org, https://bitcoin.org/bitcoin.pdf CR - Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347–370. https://doi.org/10.2307/2938260 CR - Oppenheim, D., & Shani, G. (2017). Potato disease classification using convolution neural networks. Advances in Animal Biosciences, 8(2), 244–249. http://doi.org/10.1017/S2040470017001376 CR - Özçalıcı, M. (2016). Yapay sinir ağları ile çok aşamalı fiyat tahmini: BIST 30 senetleri üzerine bir araştırma. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, 31(2), 209–227. https://doi.org/10.24988/deuiibf.2016312517 CR - Özdemir, A., & Çelik, İ. (2020). Pay piyasalarında etkin piyasalar hipotezinin farklı dağılım varsayımları bağlamında uzun hafıza modelleri ile tespiti: ABD ve Türkiye karşılaştırması. Dokuz Eylül Üniversitesi İşletme Fakültesi Dergisi, 21(1), 125–160. https://doi.org/10.24889/ifede.481059 CR - Phillip, A., Chan, J. S., & Peiris, S. (2018). A new look at cryptocurrencies. Economics Letters, 163, 6–9. https://doi.org/10.1016/j.econlet.2017.11.020 CR - Rabemananjara, R., & Zakoian, J. M. (1993). Threshold ARCH models and asymmetries in volatility. Journal of Applied Econometrics, 8(1), 31–49. https://doi.org/10.1002/jae.3950080104 CR - Sadique, S., & Silvapulle, P. (2001). Long‐term memory in stock market returns: International evidence. International Journal of Finance & Economics, 6(1), 59–67. https://doi.org/10.1002/ijfe.143 CR - Saleem, K. (2014). Modeling long memory in the Russian stock market: Evidence from major sectoral indices. Journal of Applied Business Research, 30(2), 567–574. https://doi.org/10.19030/jabr.v30i2.8426 CR - Seabe, P. L., Moutsinga, C. R. B., & Pindza, E. (2023). Forecasting cryptocurrency prices using LSTM, GRU, and bi-directional LSTM: A deep learning approach. Fractal and Fractional, 7(2), 203. https://doi.org/10.3390/fractalfract7020203 CR - Shah, D., & Zhang, K. (2014). Bayesian regression and Bitcoin. In 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton) (pp. 409–414). IEEE. https://doi.org/10.1109/ALLERTON.2014.7028484 CR - Soylu, P., Okur, M., Çatıkkaş, Ö., & Altintig, A. (2020). Long memory in the volatility of selected cryptocurrencies: Bitcoin, Ethereum and Ripple. Journal of Risk and Financial Management, 13(6), 107. https://doi.org/10.3390/jrfm13060107 CR - Tektaş, A., & Karataş, A. (2004). Yapay sinir ağları ve finans alanına uygulanması: Hisse senedi fiyat tahminlemesi. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 18, 3–4. CR - Tse, Y. (1998). The conditional heteroskedasticity of the Yen-dollar exchange rate, Journal of Applied Econometrics. 13(1), 49-55. https://doi.org/10.1002/(SICI)1099-1255(199801/02)13:1%3C49::AID-JAE459%3E3.0.CO;2-O CR - Türkyılmaz, S., & Balıbey, M. (2014). Türkiye hisse senedi piyasası oynaklığındaki asimetrik uzun hafıza özelliği. Journal of Banking and Financial Research, 1(1), 1–10. CR - Umoru, D., Ekeoba, A. A., & Igbinovia, B. (2024). Volatility behaviour of currency exchange rates in selected countries: Long memory effect. Asian Journal of Economics, Business and Accounting, 24(8), 168–189. https://doi.org/10.9734/ajeba/2024/v24i81449 CR - Wang, Y., Andreeva, G., & Martin-Barragan, B. (2023). Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants. International Review of Financial Analysis, 90, 102914. https://doi.org/10.1016/j.irfa.2023.102914 CR - Yüksel, R., & Akkoç, S. (2016). Altın fiyatlarının yapay sinir ağları ile tahmini ve bir uygulama. Doğuş Üniversitesi Dergisi, 17(1), 39–50. CR - Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353. http://doi.org/10.1016/S0019-9958(65)90241-X UR - https://doi.org/10.30798/makuiibf.1678534 L1 - https://dergipark.org.tr/en/download/article-file/4783772 ER -