TY - JOUR T1 - Proposing a Five-Phase Framework Based on ISO 23247-1 for Digital Twins in Construction AU - Aydın, Murat PY - 2025 DA - June Y2 - 2025 DO - 10.54287/gujsa.1680674 JF - Gazi University Journal of Science Part A: Engineering and Innovation JO - GU J Sci, Part A PB - Gazi University WT - DergiPark SN - 2147-9542 SP - 417 EP - 444 VL - 12 IS - 2 LA - en AB - The adoption of digital twin technology represents a significant leap forward in the construction industry, driving sustainable and efficient project workflows. Despite its transformative potential, challenges such as data integration, interoperability issues, and the absence of structured frameworks hinder broader adoption. To address these barriers, this study proposes a five-phase framework inspired by ISO 23247-1 principles, offering standardized guidelines to ensure seamless data flow, interoperability, and data-driven decision-making in digital twin applications. To evaluate its practicality, this framework was implemented in Villa EcoSmart—a hypothetical testbed simulating a sustainable residential construction project. The five phases encompass free (foundation and requirements establishment), acquire (data collection), analyze (data processing), utilize (model utilization), and update (continuous refinement). Findings demonstrate improvements in energy efficiency, material usage, and workflow optimization, underscoring the framework’s value in achieving technological innovation and environmental responsibility. Additionally, this study critically assesses the scalability and real-world applicability of digital twin technologies. By bridging the gap between theoretical knowledge and industry practices, the five-phase framework advances sustainable construction methods, aligning technological solutions with ISO standards. These insights aim to guide future implementations and promote the broader adoption of digital twins in construction. KW - Digital Twin KW - ISO 23247-1 KW - Five-Phase Framework KW - Construction Industry KW - Sustainable Construction KW - Data Integration CR - Aliento, W. (2021). Seven ways to use less concrete and save money on your projects. Jobsite. (Accessed: 01/04/2025) https://www.procore.com/jobsite/seven-ways-to-use-less-concrete-and-save-money-on-your-projects CR - Analytics, A. (2023). Aerial utility inspection: transforming asset management with aerial drone inspections for utilities. Optelos. (Accessed: 01/04/2025) https://optelos.com/transforming-aerial-utilities-inspection/ Atlas, G. W. (2025). Welcome to the global wind atlas. Global Wind Atlas. (Accessed: 01/04/2025) https://globalwindatlas.info/en/ CR - Auditors, E. C. of. (2020). Energy efficiency in buildings: greater focus on cost-effectiveness still needed. Publications Office of the European Union Luxembourg. (Accessed: 01/04/2025) https://www.eca.europa.eu/lists/ecadocuments/sr20_11/sr_energy_efficiency_in_buildings_en.pdf#page=3.10 CR - B. Heluany, J., Goetzfried, J., Mehlig, B., & Gkioulos, V. (2024). Vulnerability management digital twin for energy systems. Proceedings of the 19th International Conference on Availability, Reliability and Security, 1–11. https://doi.org/10.1145/3664476.3671013 CR - Baek, S. H., Lee, K. I., & Kim, S.-M. (2023). Development of real-time monitoring system based on iot technology for curing compound application process during cement concrete pavement construction. Sensors, 23(19), 8187. https://doi.org/10.3390/s23198187 CR - Biju, V. G., Schmitt, A.-M., & Engelmann, B. (2024). Assessing the influence of sensor-induced noise on machine-learning-based changeover detection in cnc machines. Sensors, 24(2), 330. https://doi.org/10.3390/s24020330 CR - Bong Kim, D., Shao, G., & Jo, G. (2022). A digital twin implementation architecture for wire + arc additive manufacturing based on iso 23247. Manufacturing Letters, 34, 1–5. https://doi.org/10.1016/j.mfglet.2022.08.008 CR - Burčiar, F., Važan, P., Juhásová, B., & Juhás, M. (2023). Methodical approach to proactivity using a digital twin of production process. Electronics, 12(15), 3335. https://doi.org/10.3390/electronics12153335 CR - Cabral, J. V. A., Álvares, A. J., & Caribé de Carvalho, G. (2024). Digital twin implementation for an additive manufacturing robotic cell based on the iso 23247 standard. IEEE Latin America Transactions, 22(8), 651–658. https://doi.org/10.1109/TLA.2024.10620386 CR - Cabral, J. V. A., Gasca, E. A. R., & Alvares, A. J. (2023). Digital twin implementation for machining center based on iso 23247 standard. IEEE Latin America Transactions, 21(5), 628–635. https://doi.org/10.1109/TLA.2023.10130834 CR - Caiza, G., & Sanz, R. (2024). An immersive digital twin applied to a manufacturing execution system for the monitoring and control of industry 4.0 processes. Applied Sciences, 14(10), 4125. https://doi.org/10.3390/app14104125 CR - Cillari, G., Fantozzi, F., & Franco, A. (2021). Passive solar solutions for buildings: criteria and guidelines for a synergistic design. Applied Sciences, 11(1), 376. https://doi.org/10.3390/app11010376 CR - CSSI. (2025). Monsec: Real-time monitoring of concrete maturity and temperature. Concrete Sensoring for Sustainable Infrastructure (CSSI). (Accessed: 01/04/2025) https://cssi-iot.com/en/monsec-eng/ CR - Drobnjakovic, M., Shao, G., Nikolov, A., Kulvatunyou, B., Frechette, S., & Srinivasan, V. (2023). Towards ontologizing a digital twin framework for manufacturing. In IFIP International Conference on Advances in Production Management Systems (pp. 317–329). Springer. https://doi.org/10.1007/978-3-031-43666-6_22 CR - Eddyfi. (2025). Construction monitoring: build with confidence and monitor with precise, robust wireless technology. Eddyfi Technologies. (Accessed: 01/04/2025) https://www.senceive.com/sectors/construction-monitoring CR - Farhadi, A., Lee, S. K. H., Hinchy, E. P., O’Dowd, N. P., & McCarthy, C. T. (2022). The development of a digital twin framework for an industrial robotic drilling process. Sensors, 22(19), 7232. https://doi.org/10.3390/s22197232 CR - Ferko, E., Bucaioni, A., Pelliccione, P., & Behnam, M. (2023). Analysing interoperability in digital twin software architectures for manufacturing. In European conference on software architecture (pp. 170–188). Springer. https://doi.org/10.1007/978-3-031-42592-9_12 CR - Flow, G. (2025). The most common workflow bottlenecks (and how to fix them). Gravity Flow. (Accessed: 01/04/2025) https://gravityflow.io/articles/the-most-common-workflow-bottlenecks-and-how-to-fix-them/ CR - Guerra-Zubiaga, D. A., Colani, M., Richards, G., Cavens, K., Block, L., Olliff, G., & Aksu, M. (2024). A novel digital twin model to support intelligent robotic manufacturing system according to industry 4.0 trends. Proceedings of the ASME 2024 International Mechanical Engineering Congress and Exposition. Volume 2: Advanced Manufacturing, 88605, V002T03A077. https://doi.org/10.1115/IMECE2024-145821 CR - Hammad, I., & El-Sankary, K. (2019). Practical considerations for accuracy evaluation in sensor-based machine learning and deep learning. Sensors, 19(16), 3491. https://doi.org/10.3390/s19163491 CR - Huang, H., Ji, T., & Xu, X. (2024). An adaptable digital twin model for manufacturing. Manufacturing Letters, 41, 1163–1169. https://doi.org/10.1016/j.mfglet.2024.09.142 CR - Institute, K. (2025). Innovative strategies for cost savings in construction. Kaizen Institute. (Accessed: 01/04/2025) https://kaizen.com/insights/cost-savings-strategies-construction/ CR - Invicom. (2025). Strain gauge application. Invicom Test & Measurement. (Accessed: 01/04/2025) https://invicom.com/applications/strain-gauge-application/ CR - ISO/TC184/SC4. (1984). ISO/TC 184/SC 4 industrial data technical sub-committee. ISO - International Organization for Standardization. (Accessed: 01/04/2025) https://www.iso.org/committee/54158.html CR - ISO/TC184. (1983). ISO/TC 184 automation systems and integration technical committee. ISO - International Organization for Standardization. (Accessed: 01/04/2025) https://www.iso.org/committee/54110.html CR - ISO23247-1. (2021). ISO 23247-1:2021 automation systems and integration — digital twin framework for manufacturing part 1: overview and general principles. ISO - International Organization for Standardization. (Accessed: 01/04/2025) https://www.iso.org/standard/75066.html CR - ISO23247-2. (2021). ISO 23247-2:2021 automation systems and integration — digital twin framework for manufacturing part 2: reference architecture. ISO - International Organization for Standardization. (Accessed: 01/04/2025) https://www.iso.org/standard/78743.html CR - ISO23247-3. (2021). ISO 23247-3:2021 automation systems and integration — digital twin framework for manufacturing part 3: digital representation of manufacturing elements. ISO - International Organization for Standardization. (Accessed: 01/04/2025) https://www.iso.org/standard/78744.html CR - ISO23247-4. (2021). ISO 23247-4:2021 automation systems and integration — digital twin framework for manufacturing part 4: information exchange. ISO - International Organization for Standardization. (Accessed: 01/04/2025) https://www.iso.org/standard/78745.html CR - Jacoby, M., Volz, F., Weißenbacher, C., Stojanovic, L., & Usländer, T. (2021). An approach for industrie 4.0-compliant and data-sovereign digital twins. At - Automatisierungstechnik, 69(12), 1051–1061. https://doi.org/10.1515/auto-2021-0074 CR - Ji, T., Polzer, J., & Xu, X. (2023). Cognitive digital twin framework for smart manufacturing. 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), 1–6. https://doi.org/10.1109/CASE56687.2023.10260436 CR - Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterizing the digital twin: a systematic literature review. CIRP Journal of Manufacturing Science and Technology, 29, 36–52. https://doi.org/10.1016/j.cirpj.2020.02.002 CR - Jung, Y., Lee, H., Jin, Z., Kim, S., & Kim, K. J. (2023). Revamping facility asset management (fam) for smart manufacturing: variables for theory and implementation. Proceedings of International Structural Engineering and Construction, 10(1), FAM08-1. https://doi.org/10.14455/ISEC.2023.10(1).FAM-08 CR - Kang, M.-S., Lee, D.-H., Bajestani, M. S., Kim, D. B., & Noh, S. Do. (2024). Edge computing-based digital twin framework based on iso 23247 for enhancing data processing capabilities. Machines, 13(1), 19. https://doi.org/10.3390/machines13010019 CR - Kibira, D., Shao, G., Venketesh, R., & Triebe, M. J. (2024). Building a digital twin of a cnc machine tool. 2024 Winter Simulation Conference (WSC), 2915–2926. https://doi.org/10.1109/WSC63780.2024.10838819 CR - Kibira, D., Shao, G., & Weiss, B. A. (2021). Buiding a digital twin for robot workcell prognostics and health management. 2021 Winter Simulation Conference (WSC), 1–12. https://doi.org/10.1109/WSC52266.2021.9715501 CR - Kumaş, E. (2024). International standards for digital twins. Acta Infologica, 8(2), 0–0. https://doi.org/10.26650/acin.1395045 CR - Lidell, A., Ericson, S., & Ng, A. H. C. (2022). The current and future challenges for virtual commissioning and digital twins of production lines. In SPS2022 (pp. 508–519). IOS Press. https://doi.org/10.3233/ATDE220169 CR - López De Ipiña, J. M., Aznar, G., Lopez, A., Olite, J., Koivisto, J., Bartolini, G., & Costa, A. (2021). Digital twins applied to the implementation of safe-by-design strategies in nano-processes for the reduction of airborne emission and occupational exposure to nano-forms. Journal of Physics: Conference Series, 1953(1), 012010. https://doi.org/10.1088/1742-6596/1953/1/012010 CR - Madubuike, O. C., Anumba, C. J., & Khallaf, R. (2022). A review of digital twin applications in construction. Journal of Information Technology in Construction, 27, 145–172. https://doi.org/10.36680/j.itcon.2022.008 CR - Marinkovic, M., Galka, S., & Meißner, S. (2023). Digital twins for internal transport systems: use cases, functions, and system architecture. Proceedings of the 56th Hawaii International Conference on System Sciences, 1195–1204. https://doi.org/10.24251/HICSS.2023.147 CR - Minh, T. B., Do, X. P., Nguyen, Q. H., Nguyen, K. H. V., & Phan, T. T. T. (2024). A digital twin implementation framework for a collaborative robot based on iso 23247. In The International Conference on Sustainable Energy Technologies (pp. 747–755). Springer. https://doi.org/10.1007/978-981-97-1868-9_74 CR - Noga, M., Juhás, M., & Gulan, M. (2022). Hybrid virtual commissioning of a robotic manipulator with machine vision using a single controller. Sensors, 22(4), 1621. https://doi.org/10.3390/s22041621 CR - Nooralishahi, P., Ibarra-Castanedo, C., Deane, S., López, F., Pant, S., Genest, M., Avdelidis, N. P., & Maldague, X. P. V. (2021). Drone-based non-destructive inspection of industrial sites: a review and case studies. Drones, 5(4), 106. https://doi.org/10.3390/drones5040106 CR - Patton, M. Q. (1980). Qualitative evaluation methods. Sage Publications. CR - Plevris, V., & Papazafeiropoulos, G. (2024). AI in structural health monitoring for infrastructure maintenance and safety. Infrastructures, 9(12), 225. https://doi.org/10.3390/infrastructures9120225 CR - Pointerra3D. (2025). Collaborative design: how cloud-based digital twins facilitate coordination and communication among aec stakeholders. Pointerra3D. (Accessed: 01/04/2025) https://www.pointerra.com/blog/collaborative-design-how-cloud-based-digital-twins-facilitate-coordination-and-communication-among-aec-stakeholders/ CR - Pratap, A., Vi, T.-K., Lee, Y. W., Sardana, N., Hsiung, P.-A., & Kao, Y.-C. (2024). A dt framework integrating human and artificial intelligence for power consumption prediction in cnc machining. The International Journal of Advanced Manufacturing Technology, 135(1–2), 915–938. https://doi.org/10.1007/s00170-024-14477-9 CR - Richter, R., Knospe, F., Trapp, M., & Döllner, J. (2024). Dynamic digital twins: challenges, perspectives and practical implementation from a city’s perspective (T. H. Kolbe, A. Donaubauer, & C. Beil (eds.); pp. 671–691). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-43699-4_41 CR - Rite, E. (2025). High-resolution environmental monitoring sensors in civil engineering. Encardio Rite. (Accessed: 01/04/2025) https://www.encardio.com/blog/environmental-monitoring-sensors-civil-engineering CR - Rodrigues, A. M., Formiga, K. T. M., & Milograna, J. (2023). Integrated systems for rainwater harvesting and greywater reuse: a systematic review of urban water management strategies. Water Supply, 23(10), 4112–4125. https://doi.org/10.2166/ws.2023.240 CR - Rosova, A., Behun, M., Khouri, S., Cehlar, M., Ferencz, V., & Sofranko, M. (2022). Case study: the simulation modeling to improve the efficiency and performance of production process. Wireless Networks, 28(2), 863–872. https://doi.org/10.1007/s11276-020-02341-z CR - Sacks, R., Brilakis, I., Pikas, E., Xie, H. S., & Girolami, M. (2020). Construction with digital twin information systems. Data-Centric Engineering, 1, e14. https://doi.org/10.1017/dce.2020.16 CR - Schwandt, T. A. (1996). Qualitative data analysis: An expanded sourcebook. Evaluation and Program Planning, 19(1), 106–107. https://doi.org/10.1016/0149-7189(96)88232-2 CR - Semeraro, C., Lezoche, M., Panetto, H., & Dassisti, M. (2021). Digital twin paradigm: a systematic literature review. Computers in Industry, 130, 103469. https://doi.org/10.1016/j.compind.2021.103469 CR - Shao, G. (2021). Use case scenarios for digital twin implementation based on iso 23247. In National institute of standards: Gaithersburg, MD, USA. https://doi.org/10.6028/NIST.AMS.400-2 CR - Shao, G. (2024). Manufacturing digital twin standards. Proceedings of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems, 370–377. https://doi.org/10.1145/3652620.3688250 CR - Shao, G., Frechette, S., & Srinivasan, V. (2023). An analysis of the new iso 23247 series of standards on digital twin framework for manufacturing. Volume 2: Manufacturing Equipment and Automation; Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability, 87240, V002T07A001. https://doi.org/10.1115/MSEC2023-101127 CR - Shao, G., Hightower, J., & Schindel, W. (2023). Credibility consideration for digital twins in manufacturing. Manufacturing Letters, 35, 24–28. https://doi.org/10.1016/j.mfglet.2022.11.009 CR - Sivák, P., Delyová, I., & Bocko, J. (2023). Comparison of stress concentration factors obtained by different methods. Applied Sciences, 13(24), 13328. https://doi.org/10.3390/app132413328 CR - Song, J., & Le Gall, F. (2023). Digital twin standards, open source, and best practices. In The Digital Twin (pp. 497–530). Springer International Publishing. https://doi.org/10.1007/978-3-031-21343-4_18 CR - Spaney, P., Becker, S., Ströbel, R., Fleischer, J., Zenhari, S., Möhring, H.-C., Splettstößer, A.-K., & Wortmann, A. (2023). A model-driven digital twin for manufacturing process adaptation. 2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), 465–469. https://doi.org/10.1109/MODELS-C59198.2023.00081 CR - Tao, F., Xiao, B., Qi, Q., Cheng, J., & Ji, P. (2022). Digital twin modeling. Journal of Manufacturing Systems, 64, 372–389. https://doi.org/10.1016/j.jmsy.2022.06.015 CR - Tinga, T., & Loendersloot, R. (2019). Physical model-based prognostics and health monitoring to enable predictive maintenance. In E. Lughofer & M. Sayed-Mouchaweh (Eds.), Predictive Maintenance in Dynamic Systems (pp. 313–353). Springer International Publishing. https://doi.org/10.1007/978-3-030-05645-2_11 CR - Twinview. (2023). Digital twins and bim: a synergy for improved stakeholder management. Twinview. (Accessed: 01/04/2025) https://www.twinview.com/insights/digital-twins-and-bim-a-synergy-for-improved-stakeholder-management CR - VanDerHorn, E., & Mahadevan, S. (2021). Digital twin: generalization, characterization and implementation. Decision Support Systems, 145, 113524. https://doi.org/10.1016/j.dss.2021.113524 CR - Vanlanduit, S., Sorgente, M., Zadeh, A. R., Güemes, A., & Faisal, N. (2021). Strain monitoring. In M. G. R. Sause & E. Jasiūnienė (Eds.), Structural Health Monitoring Damage Detection Systems for Aerospace (pp. 219–241). Springer International Publishing. https://doi.org/10.1007/978-3-030-72192-3_8 CR - VP, A. (2025). Importance of real-time data integration in digital twins. Toobler. (Accessed: 01/04/2025) https://www.toobler.com/blog/real-time-integration-in-digital-twins CR - Wagg, D. J., Worden, K., Barthorpe, R. J., & Gardner, P. (2020). Digital twins: state-of-the-art and future directions for modeling and simulation in engineering dynamics applications. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 6(3), 30901. https://doi.org/10.1115/1.4046739 CR - Wallner, B., Zwölfer, B., Trautner, T., & Bleicher, F. (2023). Digital twin development and operation of a flexible manufacturing cell using iso 23247. Procedia CIRP, 120, 1149–1154. https://doi.org/10.1016/j.procir.2023.09.140 CR - Wang, K., Wang, Y., Li, Y., Fan, X., Xiao, S., & Hu, L. (2022). A review of the technology standards for enabling digital twin. Digital Twin, 2(1), 4. https://doi.org/10.12688/digitaltwin.17549.2 CR - Wickberg, P., Fattouh, A., Afshar, S., & Bohlin, M. (2023). Adopting a digital twin framework for autonomous machine operation at construction sites. 2023 7th CAA International Conference on Vehicular Control and Intelligence (CVCI), 1–6. https://doi.org/10.1109/CVCI59596.2023.10397254 CR - Xia, B., Zheng, G., Zhou, H., Yu, X., Zhao, J., & Diao, Y. (2024). Stability analysis and optimization of concrete column-supported embankments in soft soil. Acta Geotechnica, 19(5), 2515–2531. https://doi.org/10.1007/s11440-024-02302-2 CR - Yoo, S. K., Sun, K. J., & Kim, S. H. (2024). Digital twin standardization: trends and future prospects. Electronics and Telecommunications Trends, 39(3), 79–86. https://doi.org/10.22648/ETRI.2024.J.390308 UR - https://doi.org/10.54287/gujsa.1680674 L1 - https://dergipark.org.tr/en/download/article-file/4792616 ER -