TY - JOUR T1 - Design and Implementation of a Toroidal Rogowski Coil-Based Current Sensing Circuit for AC Resistance Spot Welding Systems TT - Alternatif Akım Direnç Nokta Kaynak Sistemleri için Toroidal Rogowski Bobini Tabanlı Bir Akım Algılama Devresinin Tasarımı ve Gerçeklenmesi AU - Uyar, Murat AU - İşeri, Melike PY - 2025 DA - September Y2 - 2025 DO - 10.55525/tjst.1684541 JF - Turkish Journal of Science and Technology JO - TJST PB - Fırat University WT - DergiPark SN - 1308-9080 SP - 431 EP - 443 VL - 20 IS - 2 LA - en AB - This study presents the design, implementation, and experimental validation of an active integrator circuit integrated with a toroidal Rogowski coil for precise current sensing in AC resistance spot welding (AC-RSW) systems. The proposed system aims to enable accurate and stable monitoring of high-amplitude transient currents typically generated during short-duration welding cycles. Performance evaluations were conducted under laboratory conditions and a real industrial AC-RSW environment. In the laboratory setup, the integrator circuit was tested with sinusoidal input signals ranging from 100 mV to 1000 mV. The results demonstrated a highly linear output response, with regression metrics of R² = 0.9965, MAE = 3.65 mV, RMSE = 4.69 mV, and MAPE = 2.88%. The system was subjected to actual welding currents between 5 and 20 kA in the second phase. The integrator’s output voltage peaks were compared with reference current measurements, yielding R² = 0.9981, MAE = 0.55 mV, RMSE = 0.63 mV, and MAPE = 1.29%, confirming its applicability in industrial conditions. The findings suggest that the proposed system offers a cost-effective, scalable, and electromagnetically robust alternative to conventional current measurement methods in AC-RSW applications. With its linear response, high measurement accuracy, and adaptability to harsh operating conditions, the developed system holds strong potential for real-time industrial current monitoring tasks. KW - Rogowski coil KW - active integrator circuit KW - AC resistance spot welding KW - high-current sensing N2 - Bu çalışmada, AC direnç nokta kaynağı (AC-DNK) sistemlerinde hassas akım algılama için toroidal Rogowski bobini ile entegre edilmiş aktif bir entegratör devresinin tasarımı, uygulaması ve deneysel doğrulaması sunulmaktadır. Önerilen sistem, kısa süreli kaynak çevrimleri sırasında tipik olarak üretilen yüksek genlikli geçici akımların doğru ve kararlı bir şekilde izlenmesini sağlamayı amaçlamaktadır. Performans değerlendirmeleri hem laboratuvar koşullarında hem de gerçek bir endüstriyel AC-DNK ortamında gerçekleştirilmiştir. Laboratuvar kurulumunda, entegratör devresi 100 mV ila 1000 mV arasında değişen sinüzoidal giriş sinyalleri ile test edilmiştir. Sonuçlar, R² = 0,9965, MAE = 3,65 mV, RMSE = 4,69 mV ve MAPE = %2,88 regresyon metrikleri ile oldukça doğrusal bir çıkış tepkisi göstermiştir. İkinci aşamada, sistem 5 ila 20 kA arasında gerçek kaynak akımlarına maruz bırakılmıştır. Entegratörün çıkış voltajı tepe noktaları referans akım ölçümleriyle karşılaştırılmış ve R² = 0,9981, MAE = 0,55 mV, RMSE = 0,63 mV ve MAPE = %1,29 elde edilerek endüstriyel koşullarda uygulanabilirliği teyit edilmiştir. Bulgular, önerilen sistemin AC-RSW uygulamalarında geleneksel akım ölçüm yöntemlerine uygun maliyetli, ölçeklenebilir ve elektromanyetik olarak sağlam bir alternatif sunduğunu göstermektedir. Doğrusal tepkisi, yüksek ölçüm doğruluğu ve zorlu çalışma koşullarına uyarlanabilirliği ile geliştirilen sistem, gerçek zamanlı endüstriyel akım izleme görevleri için güçlü bir potansiyele sahiptir. CR - Özensoy C, Uyar M. Design and implementation of a medium frequency direct current resistance spot welding system integrated with welding control interface. Ain Shams Eng J 2025; 16(5): 103357. CR - Fomichov S, Chvertko Y, Minakov S, Skachkov I, Banin A. Measurement, control and recording in welding. In: Quality Management in Welded Fabrication Conference; 2023; Cham, Switzerland. Cham: Springer Nature Switzerland. pp. 69–111. CR - Metwally IA. Performance improvement of slow-wave Rogowski coils for high impulse current measurement. IEEE Sens J 2012; 13(2): 538–547. CR - Luković M, Koprivica B, Milovanović A. Educational laboratory setup for electric current measurement using Hall effect current sensors. In: 7th International Conference Technics and Informatics in Education (TIE2018); 2018; Čačak, Serbia: Faculty of Technical Sciences. pp. 340–346. CR - Gao Y, Wang X, Wang L. Design of weak current sensor based on Rogowski coil. In: 43rd Chinese Control Conference (CCC); July 2024; China. New York, NY, USA: IEEE. pp. 6199–6204. CR - Samimi MH, Mahari A, Farahnakian MA, Mohseni H. The Rogowski coil principles and applications: a review. IEEE Sens J 2014; 15(2): 651–658. CR - Mingotti A, Betti C, Tinarelli R, Peretto L. Simplifying Rogowski coil modeling: simulation and experimental verification. Sensors 2023; 23(19): 8032. CR - Karrer N, Hofer-Noser P. PCB Rogowski coils for high di/dt current measurement. In: 31st Annual IEEE Power Electronics Specialists Conference (PESC); June 2000; Galway, Ireland. New York, NY, USA: IEEE. pp. 1296–1301. CR - Kojovic LA. Comparative performance characteristics of current transformers and Rogowski coils used for protective relaying purposes. In: IEEE Power Engineering Society General Meeting; June 2007; Tampa, FL, USA. New York, NY, USA: IEEE. pp. 1–6. CR - Nanyan AN, Isa M, Hamid HA, Rohani MNKH, Ismail B. The Rogowski coil sensor in high current application: a review. In: IOP Conference Series: Materials Science and Engineering; March 2018; Kuala Lumpur, Malaysia. Bristol, UK: IOP Publishing. Vol. 318, No. 1, p. 012054. CR - Kojovic LA., & Beresh R. (2010). Practical aspects of Rogowski coil applications to relaying. IEEE PSRC special report, 9. CR - Rohani MNKH, Yii CC, Isa M, Hassan SIS, Ismail B, Adzman MR, Shafiq M. Geometrical shapes impact on the performance of ABS-based coreless inductive sensors for PD measurement in HV power cables. IEEE Sens J 2016; 16(17): 6625–6632. CR - Sun H, Huang S, Peng L. High-current sensing technology for transparent power grids: a review. IEEE Open J Ind Electron Soc 2024; 5: 326–358. CR - Hlavacek J, Prochazka R, Draxler K, Kvasnicka V. The Rogowski coil design software. In: Proceedings of the 16th IMEKO TC4 International Symposium; September 2008; Florence, Italy. pp. 295–300. CR - Özensoy C, Uyar M. Orta frekans doğru akım direnç nokta kaynak sistemleri için akım ölçüm devresi tasarımı ve gerçeklenmesi. Uludağ Univ Muh Fak Derg 2021; 26(2): 401–420. CR - Liu Y, Lin F, Zhang Q, Zhong H. Design and construction of a Rogowski coil for measuring wide pulsed current. IEEE Sens J 2010; 11(1): 123–130. CR - Limcharoen W, Yutthagowith P. Rogowski coil with an active integrator for measurement of switching impulse current. In: 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON); May 2013; Krabi, Thailand. New York, NY, USA: IEEE. pp. 1–4. CR - Paophan B, Kunakorn A, Yutthagowith P, Yamamoto K. Frequency response characteristics of Rogowski coil with active integrator for lightning measurement. ECTI Trans Electr Eng Electron Commun 2020; 18(1): 45–53. CR - Bawankule P, Chandrasekaran K. Rogowski coil with an active integrator for impulse current measurement. In: 3rd IEEE Global Conference for Advancement in Technology (GCAT); October 2022; Bangalore, India. New York, NY, USA: IEEE. pp. 1–5. CR - Barber JP. The use of Rogowski coils in current measurement. In: 17th International Symposium on Electromagnetic Launch Technology (EML); July 2014; San Diego, CA, USA. New York, NY, USA: IEEE. pp. 1–4. UR - https://doi.org/10.55525/tjst.1684541 L1 - https://dergipark.org.tr/en/download/article-file/4809403 ER -