TY - JOUR T1 - In situ gels loaded with naringin as ocular drug delivery carriers; development and preliminary characterization AU - Üstündağ Okur, Neslihan AU - Siafaka, Panoraia AU - Yağcılar, Ayşe Pınar Yağcilar AU - Karaotmarli Güven, Gökçe AU - Yoltaş, Ayşegül PY - 2025 DA - June JF - Journal of Research in Pharmacy JO - J. Res. Pharm. PB - Marmara University WT - DergiPark SN - 2630-6344 SP - 762 EP - 769 VL - 28 IS - 3 LA - en AB - Ocular drug delivery of any molecule is quite complex and challenging due to the ophthalmic anatomy. The current ocular formulations such as drops, gels or ointments cannot deliver the active molecules efficiently, therefore newer dosage forms are being developed. In situ gels which are in the liquid state in room temperature or in certain pH but transform to gels when instilled onto the eye belongs to such innovative dosage forms. Herein, the fabrication of in situ gels for naringin ocular delivery is presented since there are very few studies examining the use of naringin as an active molecule for eye delivery. Naringin which is hydrolyzed in naringenin, is a flavonoid glucoside found on citrus fruits and has been studied as antioxidant and anti-inflammatory agent or potent antimicrobial agent. The naringin loaded in situ gels developed via cold method using Poloxamer 407, sodium alginate and hydroxypropyl methylcellulose E5. The temperature-responsive in situ gels were characterized for clarity, sol-gel transition temperature, gelling capacity, pH and viscosity. All the results were of desirable limits. Furthermore, in vitro drug release demonstrated that the in situ gels showed sustained pattern Antimicrobial studies indicated specific antimicrobial potency against Enterococcus faecalis. Future studies will involve in vivo studies and ocular irritation analysis. KW - Naringin KW - ocular KW - in situ gels KW - eye KW - antimicrobial KW - gelation CR - [1] Francini-Pesenti F, Spinella P, Calò LA. Potential role of phytochemicals in metabolic syndrome prevention and therapy. Diabetes, Metab Syndr Obes. 2019;12:1987–2002. https://doi.org/10.2147/DMSO.S214550 CR - [2] Shin SA, Joo BJ, Lee JS, Ryu G, Han M, Kim WY, Park HH, Lee JH, Lee CS. Phytochemicals as anti-ınflammatory agents in animal models of prevalent ınflammatory diseases. Molecules. 2020;25(24):5932. https://doi.org/10.3390/molecules25245932 CR - [3] Lee TY, Tseng YH. The potential of phytochemicals in oral cancer prevention and therapy: A review of the evidence. Biomolecules. 2020;10(8):1150. https://doi.org/10.3390/biom10081150 CR - [4] Che CT, Wong MS, Lam CW. Natural products from Chinese medicines with potential benefits to bone health. Molecules. 2016;21(3):239. https://doi.org/10.3390/molecules21030239 CR - [5] Mohanty S, Konkimalla VB, Pal A, Sharma T, Si SC. Naringin as sustained delivery nanoparticles ameliorates the anti-inflammatory activity in a Freund’s complete adjuvant-ınduced arthritis model. ACS Omega. 2021;6(43):28630–28641. https://doi.org/10.1021/acsomega.1c03066 CR - [6] Kandhare AD, Ghosh P, Bodhankar SL. Naringin, a flavanone glycoside, promotes angiogenesis and inhibits endothelial apoptosis through modulation of inflammatory and growth factor expression in diabetic foot ulcer in rats. Chem Biol Interact. 2014;219:101–112. https://doi.org/10.1016/j.cbi.2014.05.012 CR - [7] Auner BG, Wirth M, Valenta C. Antioxidative activity and cytotoxicity of four different flavonoids for dermal applications. J Drug Deliv Sci Technol. 2005;15(3):227–232. https://doi.org/10.1016/S1773-2247(05)50037-6 CR - [8] Okur ME, Sakul AA, Ayla S, Karadag AE, Senyüz CS, Batur S, Daylan B, Özdemir EM, Yücelik SS, Sipahi H, Aydın A. Wound healing effect of naringin gel in alloxan induced diabetic mice. Ankara Univ Eczac Fak Derg. 2020;44(3):397–414. https://doi.org/10.33483/jfpau.742224 CR - [9] Okur ME, Köksal Karayıldırım Ç. Central possible antinociceptive mechanism of naringin. İstanbul J Pharm. 2021;51(2):204–211. https://doi.org/10.26650/IstanbulJPharm.2021.866954 CR - [10] Sharma A, Bhardwaj P, Arya SK. Naringin: A potential natural product in the field of biomedical applications. Carbohydr Polym Technol Appl. 2021;2. https://doi.org/10.1016/j.carpta.2021.100068 CR - [11] Okur NÜ, Yağcılar AP, Siafaka PI. Promising polymeric drug carriers for local delivery: The case of in situ gels. Curr Drug Deliv. 2020;17(8):675–693. https://doi.org/10.2174/1567201817666200608145748 CR - [12] Üstündağ Okur N, Yozgatlı V, Okur ME, Yoltaş A, Siafaka PI. Improving therapeutic efficacy of voriconazole against fungal keratitis: Thermo-sensitive in situ gels as ophthalmic drug carriers. J Drug Deliv Sci Technol. 2019;49. https://doi.org/10.1016/j.jddst.2018.12.005 CR - [13] Vigani B, Rossi S, Gentile M, Sandri G, Bonferoni MC, Cavalloro V, Martino E, Collina S, Ferrari F. Development of a mucoadhesive and an in situ gelling formulation based on κ-carrageenan for application on oral mucosa and esophagus walls. II. Loading of a bioactive hydroalcoholic extract. Mar Drugs. 2019;17(3):153. https://doi.org/10.3390/md17030153 CR - [14] Reddy Hv R, Bhattacharyya S. In vitro evaluation of mucoadhesive in situ nanogel of celecoxib for buccal delivery. Ann Pharm Fr. 2021;79(4):418-430. https://doi.org/10.1016/j.pharma.2021.01.006 CR - [15] Patel P, Patel P. Formulation and evaluation of clindamycin HCL in situ gel for vaginal application. Int J Pharm Investig. 2015;5(1):50. https://doi.org/10.4103/2230-973X.147233 CR - [16] Alkholief M, Kalam MA, Almomen A, Alshememry A, Alshamsan A. Thermoresponsive sol-gel improves ocular bioavailability of Dipivefrin hydrochloride and potentially reduces the elevated intraocular pressure in vivo. Saudi Pharm J. 2020;28(8):1019–1029. https://doi.org/10.1016/j.jsps.2020.07.001 CR - [17] Zhang Q, Li X, Jasti BR. Role of physicochemical properties of some grades of hydroxypropyl methylcellulose on in vitro mucoadhesion. Int J Pharm. 2021;609:121218. https://doi.org/10.1016/j.ijpharm.2021.121218 CR - [18] Kesavan K, Nath G, Pandit JK. Sodium alginate based mucoadhesive system for gatifloxacin and its in vitro antibacterial activity. Sci Pharm. 2010;78(4):941–957. https://doi.org/10.3797/scipharm.1004-24 CR - [19] Xu XR, Yu HT, Hang L, Shao Y, Ding SH, Yang XW. Preparation of naringenin/ β -cyclodextrin complex and its more potent alleviative effect on choroidal neovascularization in rats. Biomed Res Int. 2014;2014:623509. https://doi.org/10.1155/2014/623509 CR - [20] Oguido APMT, Hohmann MSN, Pinho-Ribeiro FA, Crespigio J, Domiciano TP, Verri WA Jr, Casella AMB. Naringenin eye drops ınhibit corneal neovascularization by anti-ınflammatory and antioxidant mechanisms. Invest Ophthalmol Vis Sci. 2017;58(13):5764-5776. https://doi.org/10.1167/iovs.16-19702 CR - [21] Zhang P, Liu X, Hu W, Bai Y, Zhang L. Preparation and evaluation of naringenin-loaded sulfobutylether-β-cyclodextrin/chitosan nanoparticles for ocular drug delivery. Carbohydr Polym. 2016;149:224–230. https://doi.org/10.1016/j.carbpol.2016.04.115 CR - [22] Wang H, Li X, Yang H, Wang J, Li Q, Qu R, Wu X. Nanocomplexes based polyvinylpyrrolidone K-17PF for ocular drug delivery of naringenin. Int J Pharm. 2020;578:119133. https://doi.org/10.1016/j.ijpharm.2020.119133 CR - [23] Borole P, Chaudhari Y, Dharashivkar S, Kumavat S, Shenghani K, Shah P. Preparation and evaluation of in situ gel of levofloxacin hemihydrate for treatment of peridontal disease. Int J Pharm Res Bio-Sci 2013;2(3):185–196. CR - [24] Gadad AP, Wadklar PD, Dandghi P, Patil A. Thermosensitive in situ gel for ocular delivery of lomefloxacin. Indian J Pharm Educ Res. 2016;50(2):S96–105. https://doi.org/10.5530/ijper.50.2.24 CR - [25] Purslow C, Wolffsohn JS. Ocular surface temperature: A review. Eye Contact Lens. 2005;31(3):117–123. https://doi.org/10.1097/01.ICL.0000141921.80061.17 CR - [26] Makwana SB, Patel VA, Parmar SJ. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results Pharm Sci. 2016;6:1–6. https://doi.org/10.1016/j.rinphs.2015.06.001 CR - [27] Harish NM, Prabhu P, Charyulu RN, Gulzar MA, Subrahmanyam EVS. Formulation and evaluation of in situ gels containing clotrimazole for oral candidiasis. Indian J Pharm Sci. 2009;71(4):421–427. https//doi.org/10.4103/0250-474X.57291 CR - [28] Garcia-Valldecabres M, López-Alemany A, Refojo MF. pH Stability of ophthalmic solutions. Optom - J Am Optom Assoc. 2004;75(3):161–168. https://doi.org/10.1016/S1529-1839(04)70035-4 CR - [29] Shen T, Yang Z. In vivo and in vitro evaluation of in situ gel formulation of pemirolast potassium in allergic conjunctivitis. Drug Des Develop Ther. 2021;15:2099–107. https://doi.org/10.2147/DDDT.S308448 CR - [30] Chen KJ, Lai CC, Chen HC, Chong YJ, Sun MH, Chen YP, Wang NK, Hwang YS, Chao AN, Wu WC, Yeung L, Sun CC, Liu L, Chen YH, Chou HD. Enterococcus faecalis endophthalmitis: Clinical settings, antibiotic susceptibility, and management outcomes. Microorganisms. 2021;9(5):918.https://doi.org/10.3390/microorganisms9050918 CR - [31] Kuriyan AE, Sridhar J, Flynn HW Jr, Smiddy WE, Albini TA, Berrocal AM, Forster RK, Belin PJ, Miller D. Endophthalmitis caused by Enterococcus faecalis: Clinical features, antibiotic sensitivities, and outcomes. Am J Ophthalmol. 2014;158(5):1018-1023.https://doi.org/10.1016/j.ajo.2014.07.038 CR - [32] Gugleva V, Titeva S, Ermenlieva N, Tsibranska S, Tcholakova S, Rangelov S, Momekova D. Development and evaluation of doxycycline niosomal thermoresponsive in situ gel for ophthalmic delivery. Int J Pharm. 2020;591:120010. https://doi.org/10.1016/j.ijpharm.2020.120010 CR - [33] Üstündağ Okur N, Yozgatlı V, Okur ME, Yoltaş A, Siafaka PI. Improving therapeutic efficacy of voriconazole against fungal keratitis: Thermo-sensitive in situ gels as ophthalmic drug carriers. J Drug Deliv Sci Technol. 2019;49:323–333. https://doi.org/10.1016/j.jddst.2018.12.005 CR - [34] Rupenthal ID, Green CR, Alany RG. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 1: Physicochemical characterisation and in vitro release. Int J Pharm. 2011;411(1–2):69–77. https://doi.org/10.1016/j.ijpharm.2011.03.042 CR - [35] Aksu NB, Yozgatlı V, Okur ME, Ayla Ş, Yoltaş A, Üstündağ Okur N. Preparation and evaluation of QbD based fusidic acid loaded in situ gel formulations for burn wound treatment. J Drug Deliv Sci Technol. 2019;52(April):110–121. https://doi.org/10.1016/j.jddst.2019.04.015 CR - [36] Ustundag Okur N, Yozgatli V, Senyigit Z. Formulation and detailed characterization of voriconazole loaded in situ gels for ocular application. Ankara Univ Eczac Fak Derg. 2020;44(1):33–49. https://doi.org/10.33483/jfpau.586590 CR - [37] Clinical and Laboratory Standards Institute M7-A7. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 2018. p. 112. CR - [38] Performance Standards for Antimicrobial Susceptibility Testing. CLSI Document M100-S25. Institute, Clinical and Laboratory Standards. 2015. UR - https://dergipark.org.tr/en/pub/jrespharm/issue//1686154 L1 - https://dergipark.org.tr/en/download/article-file/4816000 ER -