TY - JOUR T1 - Assessment of Positional Accuracy in Maps Derived Using UAV_PPK, UAV Network RTK, RTK-GNSS, and TUSAGA-Active Techniques AU - Özdemir, Eren Gürsoy AU - Deniz, Emirhan AU - Hezer, Melisa PY - 2025 DA - October Y2 - 2025 DO - 10.26833/ijeg.1686266 JF - International Journal of Engineering and Geosciences JO - IJEG PB - Murat YAKAR WT - DergiPark SN - 2548-0960 SP - 226 EP - 238 VL - 11 IS - 1 LA - en AB - Accurate spatial positioning is essential for many geospatial applications, particularly those requiring high precision. This study evaluates the positional accuracy of maps derived from Unmanned Aerial Vehicle (UAV) data by comparing them with Ground Control Points (GCPs) established using a high-precision electronic total station. Four positioning methods were assessed: Real-Time Kinematic (RTK), TUSAGA-Active (Turkish National Permanent GNSS Network – Active), UAV Post-Processed Kinematic (UAV_PPK), and UAV Network RTK. Accuracy was evaluated regarding horizontal and vertical deviations using standard deviation (SD) and root mean square error (RMSE) metrics. Among the tested methods, RTK demonstrated the highest positional accuracy under the tested conditions, whereas UAV_PPK exhibited the lowest, particularly in vertical positioning. RTK consistently yielded horizontal and vertical RMSE values below 25 mm, while UAV_PPK produced errors exceeding 60 mm in horizontal and reaching up to 115 mm in vertical components. These findings indicate that although UAV-based techniques provide operational efficiency, integrating accurately surveyed GCPs remains critical for achieving reliable spatial accuracy. The study emphasizes the importance of selecting appropriate positioning methods based on project-specific accuracy requirements and supports further research to optimize UAV-based mapping workflows. KW - Unmanned Aerial Vehicles KW - PPK-based positioning KW - Surveying techniques KW - RTK positioning KW - Accuracy assessment CR - Clevers, J. G. P. W. (2016). [Review of the book Fundamentals of satellite remote sensing: An environmental approach (2nd ed.), by E. Chuvieco]. International Journal of Applied Earth Observation and Geoinformation, 51, 108–109. https://doi.org/10.1016/j.jag.2016.05.001 CR - Serwa, A., & El-Semary, H. H. (2016). Integration of soft computational simulator and strapdown inertial navigation system for aerial surveying project planning. Spatial Information Research, 24(3), 279–290. https://doi.org/10.1007/s41324-016-0027-9 CR - Schloderer, G., Bingham, M., Awange, J. L., & Fleming, K. M. (2011). Application of GNSS-RTK derived topographical maps for rapid environmental monitoring: A case study of Jack Finnery Lake (Perth, Australia). Environmental Monitoring and Assessment, 180(1), 147–161. https://doi.org/10.1007/s10661-010-1778-8 CR - Manyoky, M., Theiler, P., Steudler, D., & Eisenbeiss, H. (2011, September). Unmanned aerial vehicle in cadastral applications. Paper presented at the International Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g), Zurich, Switzerland. https://doi.org/10.3929/ethz-b-000041977 CR - Bangen, S. G., Wheaton, J. M., Bouwes, N., Bouwes, B., & Jordan, C. (2014). A methodological intercomparison of topographic survey techniques for characterizing wadeable streams and rivers. Geomorphology, 206, 343–361. https://doi.org/10.1016/j.geomorph.2013.10.010 CR - Deliry, S. I., & Avdan, U. (2024). Accuracy assessment of UAS photogrammetry and structure from motion in surveying and mapping. International Journal of Engineering and Geosciences, 9(2), 165–190. https://doi.org/10.26833/ijeg.1366146 CR - Özdemir, E. G. (2022). Bağıl ve mutlak (PPP) konum çözüm yaklaşımı sunan Web-Tabanlı çevrimiçi veri değerlendirme servislerinin farklı gözlem periyotlarındaki performanslarının araştırılması. Geomatik, 7(1), 41–51. https://doi.org/10.29128/geomatik.809826 CR - Wanninger, L. (1998). Real-time differential GPS error modelling in regional reference station networks. In F. K. Brunner (Ed.), Advances in positioning and reference frames (pp. 86–92). Springer. CR - Rizos, C., & Han, S. (2003). Reference station network based RTK systems-concepts and progress. Wuhan University Journal of Natural Sciences, 8(2), 566–574. https://doi.org/10.1007/BF02899820 CR - Akpınar, B., Aykut, N. O., Dindar, A. A., Gürkan, K., & Gülal, E. (2017). Ağ RTK GNSS Yönteminin Yapı Sağlığı İzleme Çalışmalarında Kullanımı. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17(3),1030–1040. https://doi.org/10.5578/fmbd.66278 CR - Erdoğan, A., & Mutluoglu, Ö. (2020). İnsansız Hava Aracı (İHA) ile Üretilen Şeritvari Haritalardan Kübaj Hesabı. Türkiye İnsansız Hava Araçları Dergisi, 2(2), 61–66. CR - Unger, J., Reich, M., & Heipke, C. (2014). UAV-based photogrammetry: Monitoring of a building zone. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL–5, 601–606. https://doi.org/10.5194/isprsarchives-XL-5-601-2014 CR - Yakar, M. (2011). Using close range photogrammetry to measure the position of inaccessible geological features. Experimental Techniques, 35(1), 54-59. CR - Azmi, S. M., Ahmad, B., & Ahmad, A. (2014). Accuracy assessment of topographic mapping using UAV image integrated with satellite images. IOP Conference Series: Earth and Environmental Science, 18(1), 012015. https://doi.org/10.1088/1755-1315/18/1/012015 CR - Villi, O., & Yakar, M. (2022). İnsansız Hava Araçlarının Kullanım Alanları ve Sensör Tipleri. Türkiye İnsansız Hava Araçları Dergisi, 4(2), 73-100. https://doi.org/10.15317/Scitech.2017.109 CR - Nwilag, B. D., Eyoh, A. E., & Ndehedehe, C. E. (2023). Digital topographic mapping and modelling using low altitude unmanned aerial vehicle. Modeling Earth Systems and Environment, 9(2), 1463–1476. https://doi.org/10.1007/s40808-022-01677-z CR - Padró, J.-C., Muñoz, F.-J., Planas, J., & Pons, X. (2019). Comparison of four UAV georeferencing methods for environmental monitoring purposes focusing on the combined use with airborne and satellite remote sensing platforms. International Journal of Applied Earth Observation and Geoinformation, 75, 130–140. https://doi.org/10.1016/j.jag.2018.10.018 CR - Tomaštík, J., Mokroš, M., Surový, P., Grznárová, A., & Merganič, J. (2019). UAV RTK/PPK Method—An Optimal Solution for Mapping Inaccessible Forested Areas? Remote Sensing, 11(6). https://doi.org/10.3390/rs11060721 CR - Kökhan, S., & Engin, M. A. (2024). İnsansız Hava Araçları ile Orman Yangınlarının Tespitinde Görüntü İşleme ve Yapay Zekâ Tabanlı Otomatik Bir Model. Duzce University Journal of Science and Technology, 12(2), 762–775. https://doi.org/10.29130/dubited.1103375 CR - Kun, M., & Özcan, B. (2019). Maden ocaklarında insansız hava aracı kullanımı: Örnek bir saha çalışması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(2), 554–564. https://doi.org/10.25092/baunfbed.624484 CR - Mırdan, O., & Yakar, M. (2017). Tarihi Eserlerin İnsansız Hava Aracı ile Modellenmesinde Karşılaşılan Sorunlar. Geomatik, 2(3), 118-125. https://doi.org/10.29128/geomatik.306914 CR - Yakar, M., Yıldız, F., Uray, F., & Metin, A. (2010, June). Photogrammetric Measurement of The Meke Lake and Its Environment with Kite Photographs to Monitoring of Water Level to Climate Change. In ISPRS Commission V Mid-Term Symposium (pp. 613-616). CR - Ünel, F. B., Kuşak, L., Yakar, M., & Doğan, H. (2023). Coğrafi bilgi sistemleri ve analitik hiyerarşi prosesi kullanarak Mersin ilinde otomatik meteoroloji gözlem istasyonu yer seçimi. Geomatik, 8(2), 107-123. CR - Yilmaz, H. M., Yakar, M., Mutluoglu, O., Kavurmaci, M. M., & Yurt, K. (2012). Monitoring of soil erosion in Cappadocia region (Selime-Aksaray-Turkey). Environmental Earth Sciences, 66(1), 75-81. CR - Alyilmaz, C., Alyilmaz, S. & Yakar, M. (2010). Measurement of petroglyhps (rock of arts) of Qobustan with close range photogrammetry. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38 (Part 5), 29-32. CR - Erdal, K., & Makineci, H. B. (2023). Adaptation analysis of produced 3D models from UAV-SLAM and UAV-TLS data combinations. Mersin Photogrammetry Journal, 5(1), 18-23. https://doi.org/10.53093/mephoj.1269630 CR - Varol, F. (2025). Creation of surface model using unmanned aerial vehicle (UAV) photogrammetry in cultural heritage areas: The example of Kilistra Ancient City. International Journal of Engineering and Geosciences, 10(2), 137-150. https://doi.org/10.26833/ijeg.1487818 CR - Forlani, G., Dall’Asta, E., Diotri, F., Cella, U. M. di, Roncella, R., & Santise, M. (2018). Quality Assessment of DSMs Produced from UAV Flights Georeferenced with On-Board RTK Positioning. Remote Sensing, 10(2). https://doi.org/10.3390/rs10020311 CR - Hastaoğlu, K. Ö., Gül, Y., Poyraz, F., & Kara, B. C. (2019). Monitoring 3D areal displacements by a new methodology and software using UAV photogrammetry. International Journal of Applied Earth Observation and Geoinformation, 83, 101916. https://doi.org/10.1016/j.jag.2019.101916 CR - Altuntabak, H., & Ata, E. (2022). Investigation of accuracy of detailed verified by unmanned aerial vehicles with RTK system; The example of Ortakent-Bodrum Area. Advanced UAV, 2(1), 1–10. https://publish.mersin.edu.tr/index.php/uav/article/view/244 CR - Shah, M. S. M. Z., Ariff, M. F. M., & Razali, A. F. (2022). Accuracy assessment of airborne mapping based on variation of number and distribution of ground control points. In 2022 IEEE 10th Conference on Systems, Process & Control (ICSPC) (pp. 88–93). IEEE. https://doi.org/10.1109/ICSPC55597.2022.10001799 CR - Polat, H., & Ataş, İ. (2024). Accuracy Analysis of Photogrammetric Digital Topographic Map Production: The Case Study of Kuruca Village in Bingöl Center. International Journal of Nature and Life Sciences, 8(2), 241-251. https://doi.org/10.47947/ijnls.1608608 CR - Bartın Governorship. (2025). Ulus. http://www.bartin.gov.tr/ulus CR - Turkish State Meteorological Service. (2023). Meteorological data. http://www.mgm.gov.tr CR - Topcon. (2021). Topcon ES Series Total Stations – Product Overview. Topcon Positioning Systems. Retrieved from: http://topconsokkia.ind.in/www/uploads/product_brochur/es-series.pdf CR - SinoGNSS. (2022). N3 GNSS Receiver Datasheet. CHC Navigation. Retrieved from: https://www.comnavtech.com/sp/uploads/soft/20240530/de84c56eec4fd67bcc89d25c7b71d8f5.pdf. CR - DJI. (2022). Mavic 3 Enterprise Series Specifications. DJI Official Website. Retrieved from: https://enterprise.dji.com/mavic-3-enterprise/specs CR - Eker, R., Alkan, E., & Aydın, A. (2021). A Comparative Analysis of UAV-RTK and UAV-PPK Methods in Mapping Different Surface Types. European Journal of Forest Engineering, 7(1), 12–25. https://doi.org/10.33904/ejfe.938067 CR - İnal, C., Gündüz, A. M., & Bülbül, S. (2014). Klasik RTK ve Ağ-RTK Yöntemlerinin Karşılaştırılması. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 2(2), 21-30. CR - Türk, Y., Balaban, B., Alkan, E., Çınar, T., & Aydın, A. (2022). Açık maden sahalarında kazı sonrası zemin değişiminin izlenmesinde İHA-tabanlı RTK/PPK yönteminin kullanımı: Düzce-Tatlıdere taş ocağı örneği. Ormancılık Araştırma Dergisi, 9(Özel Sayı), 76–85. https://doi.org/10.17568/ogmoad.1093694 CR - Silwal, A., Tamang, S., & Adhikari, R. (2022). Use of unmanned aerial vehicle (UAV) for mapping, and accuracy assessment of the orthophoto with and without using GCPs: A case study in Nepal. Mersin Photogrammetry Journal, 4(2), 45–52. https://doi.org/10.53093/mephoj.1176847 CR - Güngör, R., Uzar, M., Atak, B., Yılmaz, O. S., et al. (2022). Orthophoto production and accuracy analysis with UAV photogrammetry. Mersin Photogrammetry Journal, 4(1), 1-6. https://doi.org/10.53093/mephoj.1122615 CR - Ismael, R. Q., & Henari, Q. Z. (2019). Accuracy assessment of UAV photogrammetry for large scale topographic mapping. In 2019 International Engineering Conference (IEC) (pp. 1–5). https://doi.org/10.1109/IEC47844.2019.8950607 CR - Sefercik, U. G., Kavzoğlu, T., Çölkesen, İ., Nazar, M., et al. (2023). 3D positioning accuracy and land cover classification performance of multispectral RTK UAVs. International Journal of Engineering and Geosciences, 8(2), 119-128. https://doi.org/10.26833/ijeg.1074791 CR - Pathak, S., Acharya, S., Bk, S., Karn, G., et al. (2024). UAV-based topographical mapping and accuracy assessment of orthophoto using GCP. Mersin Photogrammetry Journal, 6(1), 1-8. https://doi.org/10.53093/mephoj.1350426 CR - Türk, T., & Öcalan, T. (2020). PPK GNSS Sistemine Sahip İnsansız Hava Araçları ile Elde Edilen Fotogrametrik Ürünlerin Doğruluğunun Farklı Yaklaşımlarla İrdelenmesi. Türkiye Fotogrametri Dergisi, 2(1), 22–28. UR - https://doi.org/10.26833/ijeg.1686266 L1 - https://dergipark.org.tr/en/download/article-file/4816359 ER -