TY - JOUR T1 - On Dual Hyperbolic Narayana and Narayana-Lucas Hybrid Quaternions AU - Kumar, Pankaj AU - Kapoor, Shilpa PY - 2025 DA - September Y2 - 2025 DO - 10.32323/ujma.1686437 JF - Universal Journal of Mathematics and Applications JO - Univ. J. Math. Appl. PB - Emrah Evren KARA WT - DergiPark SN - 2619-9653 SP - 116 EP - 125 VL - 8 IS - 3 LA - en AB - In this present communication, we introduce the novel concepts of dual hyperbolic Narayana quaternions and dual hyperbolic Narayana-Lucas quaternions within the framework of hybrid numbers. We also explore the connections between these newly defined quaternions and examine the mathematical properties they share. Additionally, we find the recurrence relations, Binet formulas, generating functions, exponential generating functions, and other meaningful identities. These newly introduced quaternions have significant applications in the fields of quantum physics, computer graphics, and robotics. Additionally, these identities and relationships we established also play an important role in the field of number theory and combinatorics. KW - Hybrid number KW - Hyperbolic KW - Narayana-Lucas sequence KW - Quaternions CR - [1] Y. Soykan, C. Koc, A detailed study on matrix sequence of generalized Narayana numbers, J. Sci. Res. Rep., 27(6) (2021), 40–64. https://doi.org/10.9734/jsrr/2021/v27i630401 CR - [2] F. A. Costabile, M. I. Gualtieri, A. Napoli, Polynomial sequences and their applications, Mathematics, 10(24) (2022), 4804. https://doi.org/10.3390/math10244804 CR - [3] W. R. Hamilton, Theory of quaternions, Proc. R. Irish Acad., 3 (1844), 1–16. CR - [4] M. Akyigit, H. H. Kösal, M. Tosun, Fibonacci generalized quaternions, Adv. Appl. Clifford Algebra, 24(3) (2014), 631–641. https://doi.org/10.1007/s00006-014-0458-0 CR - [5] C. B. Çimen, A. İpek, On Pell quaternions and Pell-Lucas quaternions, Adv. Appl. Clifford Algebra, 26(1) (2016), 39–51. https://doi.org/10.1007/s00006-015-0571-8 CR - [6] D. Tasci, F. Yalcin, Fibonacci-p quaternions, Adv. Appl. Clifford Algebra, 25(1) (2015), 245–254. https://doi.org/10.1007/s00006-014-0472-2 CR - [7] C. Flaut, V. Shpakivskyi, On generalized Fibonacci quaternions and Fibonacci-Narayana quaternions, Adv. Appl. Clifford Algebra, 23(3) (2013), 673–688. https://doi.org/10.1007/s00006-013-0388-2 CR - [8] A. F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, Amer. Math. Monthly, 70(3) (1963), 289–291. https://doi.org/10.2307/2313129 CR - [9] A. F. Horadam, Quaternion recurrence relations, Ulam Q., 2(2) (1993), 23–33. CR - [10] M. R. Iyer, A note on Fibonacci quaternions, Fibonacci Q., 7(3) (1969), 225–229. https://doi.org/10.1080/00150517.1969.12431146 CR - [11] M. N. S. Swamy, On generalized Fibonacci quaternions, Fibonacci Q., 11(5) (1973), 547–550. https://doi.org/10.1080/00150517.1973.12430808 CR - [12] E. Ozkan, H. Akkuş, Hyperbolic k-Oresme and k-Oresme-Lucas quaternions, Proof, 4 (2024), 141-149. https://doi.org/10.37394/232020.2024.4.14 CR - [13] J. Cockle, On systems of algebra involving more than one imaginary; and on equations of the fifth degree, Lond. Edinb. Dubl. Phil. Mag. J. Sci., 35(238) (1849), 434–437. https://doi.org/10.1080/14786444908646384 CR - [14] M. Akar, S. Yüce, S. Sahin, On the dual hyperbolic numbers and the complex hyperbolic numbers, J. Comput. Sci. Comput. Math., 8(1) (2018), 1–6. https://doi.org/10.20967/jcscm.2018.01.001 CR - [15] F. T. Aydin, Dual-hyperbolic Pell quaternions, J. Discrete Math. Sci. Cryptogr., 25(5) (2020), 1321–1334. https://doi.org/10.1080/09720529.2020.1758367 CR - [16] D. Brod, A. Szynal-Liana, I. Włoch, Two generalizations of dual-hyperbolic balancing numbers, Symmetry, 12(11) (2020), Article ID 1866. https://doi.org/10.3390/sym12111866 CR - [17] A. Cihan, A. Z. Azak, M. A. Güngör, M. Tosun, A study on dual hyperbolic Fibonacci and Lucas numbers, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat., 27(1) (2019), 35–48. https://doi.org/10.2478/auom-2019-0002 CR - [18] M. Özdemir, Introduction to hybrid numbers, Adv. Appl. Clifford Algebra, 28(1) (2018), Article ID 11. https://doi.org/10.1007/s00006-018-0833-3 CR - [19] S. Kapoor, P. Kumar, On Narayana-Lucas hybrinomial sequence, Palestine J. Math., 13(4) (2024), 865–872. CR - [20] M. Liana, A. Szynal-Liana, I. Włoch, On Pell hybrinomials, Miskolc Math. Notes, 20(2) (2019), 1051–1062. https://doi.org/10.18514/MMN.2019.2971 CR - [21] S. Petroudi, M. Pirouz, A. Özkoç, The Narayana polynomial and Narayana hybrinomial sequences, Konuralp J. Math., 9(1) (2021), 90–99. CR - [22] A. Szynal-Liana, I. Włoch, On Jacobsthal and Jacobsthal-Lucas hybrid numbers, Ann. Math. Silesianae, 33(1) (2019), 276–283. https://doi.org/10.2478/amsil-2018-0009 CR - [23] A. Szynal-Liana, I. Włoch, Generalized Fibonacci-Pell hybrinomials, Online J. Anal. Comb., 15 (2020), 1–12. CR - [24] A. Szynal-Liana, I. Włoch, Introduction to Fibonacci and Lucas hybrinomials, Complex Var. Elliptic Equ., 65(10) (2019), 1736–1747. https://doi.org/10.1080/17476933.2019.1681416 CR - [25] Y. Soykan, On generalized Narayana numbers, Int. J. Adv. Appl. Math. Mech., 7(3) (2020), 43–56. UR - https://doi.org/10.32323/ujma.1686437 L1 - https://dergipark.org.tr/en/download/article-file/4817058 ER -