TY - JOUR T1 - Biophysical and thermodynamical insights into the interaction of mefenamic acid with human serum albumin, based on combined multi-spectroscopic and molecular modeling approaches AU - Soltani, Somaieh AU - Parvizifard, Golnaz AU - Zakariazadeh, Mostafa AU - Haghaei, Hossein AU - Shaban, Mina PY - 2025 DA - June JF - Journal of Research in Pharmacy JO - J. Res. Pharm. PB - Marmara University WT - DergiPark SN - 2630-6344 SP - 372 EP - 384 VL - 28 IS - 1 LA - en AB - The molecular mechanism of interaction between Mefenamic acid (MA) and human serum albumin (HSA) was investigated. UV-Visible absorption, fluorescence, and FT-IR spectroscopies, with molecular docking, have been used for assay of complex formation, quenching mechanism study, thermodynamic evaluations, and molecular details of the interaction mechanism. The quenching constant (Ksv) of 1.51×105 M-1 was obtained, while the results are indicating the dynamic quenching mechanism. The number of binding sites (n) and apparent binding constants (KA) were 1.51 and 6.55×107 M-1, respectively that resembles positive cooperativity and and strong binding of MA to HSA. The negative sign of standard enthalpy change (ΔH = -88.51 KJ/mol), standard entropy change (ΔS = -146.24 J/mol K), and Gibbs free energy (ΔG = -44.93 KJ/mol) indicated that the van der Waals interactions and hydrogen bonds are facilitating the MA-HSA complex formation. Addition of the metal ions, glucose, urea, and basic pHs decrease the MA-HSA binding constant. Molecular docking simulation showed that mainly positively charged amino acid residues contribute to the MA-HSA interaction. KW - Mefenamic acid KW - NSAID-HSA interaction KW - Spectroscopy methods KW - Molecular docking CR - [1] Zsila F. Circular dichroism spectroscopic detection of ligand binding induced subdomain IB specific structural adjustment of human serum albumin. J Phys Chem B. 2013; 117(37): 10798-10806. https://doi.org/10.1021/jp4067108 CR - [2] Poureshghi F, Ghandforoushan P, Safarnejad A, Soltani S. Interaction of an antiepileptic drug, lamotrigine with human serum albumin (HSA): Application of spectroscopic techniques and molecular modeling methods. J Photochem Photobiol B: Biology. 2017; 166: 187-192. https://doi.org/10.1016/j.jphotobiol.2016.09.046. CR - [3] Fanali G, Masi A, Trezza V, Marino M, Fasona M, Ascenzi P. Human serum albumin: From bench to bedside. Mol Aspects Med. 2012; 33(3): 209-290. https://doi.org/10.1016/j.mam.2011.12.002 CR - [4] Patra S, Santhosh K, Pabbathi A, Samanta A. Diffusion of organic dyes in bovine serum albumin solution studied by fluorescence correlation spectroscopy. RSC Advances. 2012; 2(14): 6079-6086. https://doi.org/10.1039/C2RA20633A. CR - [5] Safarnejad A, Shaghaghi M, Dehghan G, Soltani S. Binding of carvedilol to serum albumins investigated by multi-spectroscopic and molecular modeling methods. J Lumin. 2016; 176: 149-158. https://doi.org/10.1016/j.jlumin.2016.02.001 CR - [6] Zhang J, Zhuang S, Tong C, Liu W. Probing the molecular interaction of triazole fungicides with human serum albumin by multispectroscopic techniques and molecular modeling. J Agric Food Chem. 2013; 61(30): 7203-7211. https://doi.org/10.1021/jf401095n CR - [7] Zsila F. Subdomain IB is the third major drug binding region of human serum albumin: toward the three-sites model. Mol Pharm. 2013; 10(5): 1668-1682. 10.1021/mp400027q CR - [8] Alam A, Uddin R, Haque S. Protein binding interaction of warfarin and acetaminophen in presence of arsenic and of the biological system. Bangladesh J Pharmacol. 2008; 3(2): 49-54. 10.3329/bjp.v3i2.835 CR - [9] Xu H, Yao N, Xu H, Wang T, Li G, Li Z. Characterization of the interaction between eupatorin and bovine serum albumin by spectroscopic and molecular modeling methods. Int J Mol Sci. 2013; 14(7): 14185-14203. 10.3390/ijms140714185 CR - [10] Bojko B, Sutkowska A, Maciqzek-Jurczyk M, Rownicka J, Sulkowski W. Investigations of acetaminophen binding to bovine serum albumin in the presence of fatty acid: fluorescence and 1H NMR studies. J Mol Struct. 2009; 924: 332-337. https://doi.org/10.1016/j.molstruc.2008.12.015 CR - [11] Bally M, Dendukuri N, Rich B, Nadeau L, Helin-Salmivaara A, Garbe E, Brophy J. Risk of acute myocardial infarction with NSAIDs in real world use: bayesian meta-analysis of individual patient data. BMJ. 2017; 357: j1909. https://doi.org/10.1136/bmj.j1909 CR - [12] Bukkitgar S, Shetti N, Nayak D, Bagehalli G, Nadibewoor S. Electrochemical sensor for the detection of mefenamic acid in pharmaceutical sample and human urine at glassy carbon electrode. Der Pharma Chemica. 2014; 6(2): 258-268. CR - [13] Dhumal BS, Bhusari KP, Ghante MH, Jain NS. UV spectrophotometric analysis for the determination of mefenamic acid in pharmaceutical formulation. IAJPR. 2015. 5(11): 3643-3650. http://www.scopemed.org/?mno=211166. CR - [14] Lakowicz J. Principles of fluorescence spectroscopy (ed. Lakowicz, JR) 1–14. 2013, Springer Science & Business Media. CR - [15] Shahabadi N, Khorshidi A, Moghadam NH. Study on the interaction of the epilepsy drug, zonisamide with human serum albumin (HSA) by spectroscopic and molecular docking techniques. Spectrochim Acta A Mol Biomol Spectrosc. 2013; 114: 627-632. https://doi.org/10.1016/j.saa.2013.05.092. CR - [16] Tian, F, Li J, Jiang F, Han X, Xiang C, Ge Y, Li L, Liu Y. The adsorption of an anticancer hydrazone by protein: an unusual static quenching mechanism. RSC Advances. 2012; 2(2): 501-513. https://doi.org/10.1039/C1RA00521A. CR - [17] Ciepluch K, Katir N, Kadip AE, Weber M, Caminade AM, Bousmina M, Majoral JP, Bryszewska M. Photo-physical and structural interactions between viologen phosphorus-based dendrimers and human serum albumin. J Lumin. 2012; 132(6): 1553-1563. https://doi.org/10.1016/j.jlumin.2012.01.044 CR - [18] Zhou N, Liang Y, Wang P. 18β-Glycyrrhetinic acid interaction with bovine serum albumin. J Photochem Photobiol A Chem 2007; 185(2-3): 271-276. https://doi.org/10.1016/j.jphotochem.2006.06.019 CR - [19] Haghaei H, Hosseini SRA, Soltani S, Fathi F, Mokhtari F, Karima S, Rashidi M. Kinetic and thermodynamic study of beta-Boswellic acid interaction with Tau protein investigated by surface plasmon resonance and molecular modeling methods. Bioimpacts. 2020;10(1):17-25. https://doi.org/10.15171/bi.2020.03. CR - [20] Carter D, Ho J, Wang Z. Albumin binding sites for evaluating drug interactions and methods of evaluating or designing drugs based on their albumin binding properties. Google Patents, CA2585115A1. CR - [21] Taylor KM, Aulton ME. Aulton's Pharmaceutics E-Book: The Design and Manufacture of Medicines. Elsevier Health Sciences.2021. CR - [22] Ascenzi P, Fasano M. Allostery in a monomeric protein: The case of human serum albumin. Biophys Chem. 2010; 148(1-3): 16-22. https://doi.org/10.1016/j.bpc.2010.03.001 CR - [23] Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074-D1082. https://doi.org/10.1093/nar/gkx1037. CR - [24] Dokmanić I, Šikić M, Tomić S. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination. Acta Crystallogr D Biol Crystallogr. 2008. 64(3): 257-263. https://doi.org/10.1107/S090744490706595X CR - [25] Safo MK, Ahmed MH, Ghatge MS, Boyiri T. Hemoglobin–ligand binding: Understanding Hb function and allostery on atomic level. Biochim Biophys Acta Proteins Proteom. 2011; 1814(6): 797-809. https://doi.org/10.1016/j.bbapap.2011.02.013 CR - [26] Bolattin MB, Nandibewoor ST, Joshi SD, Dixit SR, Chimatadar SA. Interaction between carisoprodol and bovine serum albumin and effect of β-cyclodextrin on binding: Insights from molecular docking and spectroscopic techniques. RSC Advances. 2016; 6(68): 63463-63471. https://doi.org/10.1039/C6RA08063D CR - [27] Deng B, Wang Y, Zhu P, Xu X, Ning X. Study of the binding equilibrium between Zn (II) and HSA by capillary electrophoresis–inductively coupled plasma optical emission spectrometry. Anal Chim Acta. 2010; 683(1): 58-62. 10.1016/j.aca.2010.10.018 CR - [28] Shen GF, Liu TT, Wang Q, Jiang M, Shi J. Spectroscopic and molecular docking studies of binding interaction of gefitinib, lapatinib and sunitinib with bovine serum albumin (BSA). J Photochem Photobiol Biology. 2015; 153: 380-390. https://doi.org/10.1016/j.jphotobiol.2015.10.023 CR - [29] Śliwińska-Hill U, Wiglusz K. The interaction between human serum albumin and antidiabetic agent–exenatide: determination of the mechanism binding and effect on the protein conformation by fluorescence and circular dichroism techniques-Part I. J Biomol Struct Dyn. 2020; 38(8): 2267-2275. ttps://doi.org/10.1080/07391102.2019.1630007 CR - [30] Byadagi K, Meti M, Nandibewoor S, Chimatadar S. Investigation of binding behaviour of procainamide hydrochloride with human serum albumin using synchronous, 3D fluorescence and circular dichroism. J Pharm Anal. 2017; 7(2): 103-109. https://doi.org/10.1016/j.jpha.2016.07.004 CR - [31] Cheng Z. Interaction of ergosterol with bovine serum albumin and human serum albumin by spectroscopic analysis. Mol Biol Rep. 2012; 39: 9493-9508. https://doi.org/10.1007/s11033-012-1814-6 CR - [32] Awasthi S, Nambiappan S. Non-enzymatic glycation mediated structure–function changes in proteins: case of serum albumin. RSC Advances. 2016; 6(93): 90739-90753. https://doi.org/10.1039/C6RA08283A CR - [33] Otagiri M, Chuang V. Pharmaceutically important pre-and posttranslational modifications on human serum albumin. Biol Pharm Bull. 2009; 32(4): 527-534. https://doi.org/10.1248/bpb.32.527. CR - [34] Chatterjee T, Pal A, Dey Scharita, Chatterjee BK, Chakrabarti P. Interaction of virstatin with human serum albumin: Spectroscopic analysis and molecular modeling. PloS One. 2012; 7(5): e37468. https://doi.org/10.1371/journal.pone.0037468 CR - [35] Rehman, MT, Shamsi H, Khan AU. Insight into the binding mechanism of imipenem to human serum albumin by spectroscopic and computational approaches. Mol Pharm. 2014; 11(6): 1785-1797. https://doi.org/10.1021/mp500116c CR - [36] Kandagal PB, Ashoka S, Seetharamappa J, Shaikh SMT, Jadegoud Y, Ijare OB. Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach. J Pharm Biomed Anal. 2006; 41(2): 393-399. https://doi.org/10.1016/j.jpba.2005.11.037 CR - [37] Karami K, Jamshidian N, Zakariazadeh M. Synthesis, characterization and molecular docking of new C, N‐palladacycles containing pyridinium‐derived ligands: DNA and BSA interaction studies and evaluation as anti‐tumor agents. Appl Organomet Chem. 2019; 33(3): e4728. https://doi.org/10.1002/aoc.4728 CR - [38] Mudalip SKA, Bakar MRA, Adam F, Jamal P. Structures and hydrogen bonding recognition of mefenamic acid form I crystals in mefenamic acid/ethanol solution. Int J Chem Eng Appl. 2013; 4(3): 124-128. https://doi.org/10.7763/IJCEA.2013.V4.277 CR - [39] Gomes DE, Caruso ÍP, de Araujo GC, de Lourenço IO, de Melo FA, Cornélio ML, Fossey MA, de Souza FP. Experimental evidence and molecular modeling of the interaction between hRSV-NS1 and quercetin. Int J Biol Macromol. 2016;85:40-47. https://doi.org/10.1016/j.ijbiomac.2015.12.051. CR - [40] Morris GM, Lim-Wilby M. Molecular docking. Methods Mol Biol. 2008;443:365-382. https://doi.org/10.1007/978-1-59745-177-2_19 CR - [41] Soltani S, Babaei H, Asadpour-Zeynali K, Jouyban A. Modeling vasorelaxant activity of some drugs/drug candidates using artificial neural networks. J Pharmacol Toxicol. 2007; 2: 411-426. https://doi.org/10.3923/jpt.2007.411.426 CR - [42] Tatardar S, Jouyban A, Soltani S. QSAR analysis of cyclooxygenase inhibitors selectivity index (COX1/COX2): Application of SVM-RBF and MLR methods. Pharm Sci. 2015; 21(2): 86-93. http://dx.doi.org/10.15171/PS.2015.22 CR - [43] Zakariazadeh M, Barzegar A, Soltani S, Aryaour H. Developing 2D-QSAR models for naphthyridine derivatives against HIV-1 integrase activity. Med Chem Res, 2015; 24: 2485-2504. https://doi.org/10.1007/s00044-014-1305-5 CR - [44] Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785-2791. https://doi.org/10.1002/jcc.21256 CR - [45] Karami K, Rahimi M, Zakariazadeh M, Buyukgungor O. A novel silver (I) complex of α-keto phosphorus ylide: Synthesis, characterization, crystal structure, biomolecular interaction studies, molecular docking and in vitro cytotoxic evaluation. J Mol Structure. 2019; 1177: 430-443. https://doi.org/10.1016/j.molstruc.2018.09. UR - https://dergipark.org.tr/en/pub/jrespharm/issue//1686645 L1 - https://dergipark.org.tr/en/download/article-file/4817876 ER -