TY - JOUR T1 - LC-MS /MS characterization and biological activities of Morina persica L. (Caprifoliaceae) AU - Gözcü, Sefa AU - Akşit, Zeynep AU - Şimşek, Samed AU - Kandemir, Ali AU - Aydın, Ali AU - Yılmaz, Mustafa Abdullah AU - Akşit, Hüseyin PY - 2025 DA - July JF - Journal of Research in Pharmacy JO - J. Res. Pharm. PB - Marmara University WT - DergiPark SN - 2630-6344 SP - 961 EP - 973 VL - 28 IS - 4 LA - en AB - The study aimed to comprehensively identify the phenolic fingerprint of Morina persica L. (Caprifoliaceae) and evaluate its various biological activities. LC-MS/MS analysis of 70% Morina persica methanol extract revealed the presence of 27 phytochemicals, with quinic acid, chlorogenic acid, and rutin being the major phenolics. The antioxidant, antibacterial, antiproliferative, and cytotoxic activities were evaluated for biological screening. The results showed that the methanolic extract of M. persica has a moderate DPPH radical scavenging and ferric-reducing capacity, indicating antioxidant activity. M. persica was observed to have a sufficient antiproliferative effect against cancer cells and low cytotoxicity against normal cells. Moreover, M. persica demonstrated good antibacterial activity against Clostridium perfringens, Enterococcus faecalis, and Escherichia coli. These data suggest that the methanolic extract of M. persica could be considered both an industrial source of quinic acid and a potential biologically active ingredient for developing drug formulations. KW - Morina persica L. KW - antibacterial KW - antioxidant KW - antiproliferative KW - LC-MS/MS CR - [1] Safaeian R, Ghareghan F, Ghanbarian G. The evaluation of essential oil composition of Morina Persica L. As an endemic ethnoveterinary plant in Iran. Heliyon 2021; 1: 1-5. http://dx.doi.org/10.2139/ssrn.3984076 CR - [2] Kumar A, Varshney VK, Rawat MSM, Martinez JR, Stashenko EE. Chemical composition of the essential oil of Morina longifolia Wall. leaves. J Herbs Spices Med Plants. 2013; 19(4): 348-356. http://dx.doi.org/10.1080/10496475.2013.800624 CR - [3] Güner A, Aslan S, Ekim T, Vural M, Babaç MT. Türkiye bitkileri listesi:(Vascular Plants) first ed., Nezahat Gökyiǧit Botanik Bahçesi Yayınları, İstanbul, Türkiye, 2012. CR - [4] Bodakhe SH, Ram A, Pandey DP. A new aromatic glycoside from Morina longifolia Wall. Asian J Chem. 2010; 22(4): 2789-2793. CR - [5] Zhu Y, Lü ZP, Xue CB, Wu WS. New triterpenoid saponins and neolignans from Morina kokonorica. Helv Chim Acta. 2009; 92(3): 536-545. https://doi.org/10.1002/hlca.200800216 CR - [6] Teng R, Xie H, Liu X, Wang D, Yang C. A novel acylated flavonol glycoside from Morina nepalensis var. alba. Fitoterapia. 2002; 73(1): 95-96. https://doi.org/10.1016/S0367-326X(01)00324-0 CR - [7] Su BN, Takaishi Y. Morinins HK. Four novel phenylpropanol ester lipid metabolites from Morina chinensis. J Nat Prod. 1999; 62(9): 1325-1327. https://doi.org/10.1021/np990145n CR - [8] Su BN, Takaishi Y, Kusumi T, Morinols AL. Twelve novel sesquineolignans and neolignans with a new carbon skeleton from Morina chinensis. Tetrahedron. 1999; 55(51): 14571-14586. https://doi.org/10.1016/S0040-4020(99)00933-3 CR - [9] Baser K, Kürkçüoglu M. Composition of the essential oil of Morina persica L. flowers. J Essent Oil Res. 1998; 10(1): 117-118. https://doi.org/10.1080/10412905.1998.9700856 CR - [10] Tashev A, Pancheva E. The Melliferous plants of the Bulgarian flora—Conservation importance. Forestry. 2011; 17(2): 228-237. CR - [11] Tasdemir D, Dönmez A, Çalıs I, Rüedi P. Evaluation of biological activity of Turkish plants. Rapid screening for the antimicrobial, antioxidant, and acetylcholinesterase inhibitory potential by TLC bioautographic methods. Pharm Biol. 2004; 42(4-5): 374-383. https://doi.org/10.1080/13880200490519695 CR - [12] Tasdemir D, Brun R, Perozzo R, Dönmez A. Evaluation of antiprotozoal and plasmodial enoyl‐ACP reductase inhibition potential of turkish medicinal plants. Phytother Res. 2005; 19(2): 162-166. https://doi.org/10.1002/ptr.1648 CR - [13] Mocan A, Zengin G, Uysal A, Gunes E, Mollica A, Degirmenci NS, Alpsoy L, Aktumsek A. Biological and chemical insights of Morina persica L.: A source of bioactive compounds with multifunctional properties. J Funct Foods. 2016; 25: 94-109. https://doi.org/10.1016/j.jff.2016.05.010 CR - [14] Tosun F, Akyüz Kızılay Ç, Şener B, Vural M. The evaluation of plants from Turkey for in vitro antimycobacterial activity. Pharm Biol. 2005; 43(1): 58-63. https://doi.org/10.1080/13880200590903372 CR - [15] Sadi G, Kaya A, Yalcin HA, Emsen B, Kocabas A, Kartal DI, Altay A. Wild edible mushrooms from Turkey as possible anticancer agents on HepG2 cells together with their antioxidant and antimicrobial properties. Int J Med Mushrooms. 2016; 18(1): 83-95. https://doi.org/10.1615/IntJMedMushrooms.v18.i1.100 CR - [16] Córdoba E, Muñoz J, Blázquez M, González F, Ballester A. Leaching of chalcopyrite with ferric ion. Part II: Effect of redox potential. Hydrometallurgy. 2008; 93(3-4): 88-96. https://doi.org/10.1016/j.hydromet.2008.04.016 CR - [17] Nurgali K, Jagoe RT, Abalo R. Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae?. Front. Pharmacol. 2018; 9: 245-249. https://doi.org/10.3389/fphar.2018.00245 CR - [18] Powers MP. The ever-changing world of gene fusions in cancer: a secondary gene fusion and progression. Oncogen. 2019; 38(47): 7197-7199. https://doi.org/10.1038/s41388-019-1057-2 CR - [19] Conti L, Macedi E, Giorgi C, Valtancoli B, Fusi V. Combination of light and Ru (II) polypyridyl complexes: Recent advances in the development of new anticancer drugs. Coord Chem Rev. 2022; 469: 214-256. https://doi.org/10.1016/j.ccr.2022.214656 CR - [20] Cuyckens F, Claeys M. Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom. 2004; 39(1): 1-15. https://doi.org/10.1002/jms.585 CR - [21] Mocan A, Zengin G, Uysal A, Gunes E, Mollica A, Degirmenci NS, Alpsoy L, Aktumsek A. Biological and chemical insights of Morina persica L.: A source of bioactive compounds with multifunctional properties. J Funct Foods. 2016; 25: 94-109. https://doi.org/10.1016/j.jff.2016.05.010 CR - [22] Pero RW, Lund H, Leanderson T. Antioxidant metabolism induced by quinic acid. Increased urinary excretion of tryptophan and nicotinamide. Phytother Res. 2009 ;23(3): 335-346. https://doi.org/10.1002/ptr.2628 CR - [23] Özbek H. Cydonia oblonga Mill. In: Dereli Gürağaç FT, Ilhan M, Belwal T. (Eds). Novel Drug Targets With Traditional Herbal Medicines. Springer, Sweden, 2022. Pp. 209-228. CR - [24] Wang GF, Shi LP, Ren YD, Liu QF, Liu HF, Zhang RJ, Li Z, Zhu FH, He PL, Tang W, Tao PZ, Li C, Zhao WM, Zuo JP. Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antivir Res. 2009; 83(2): 186-190. https://doi.org/10.1016/j.antiviral.2009.05.002 CR - [25] Toghyani Khorasgani A, Amini Khoei H, Shadkhast M, Salimian S, Majidian M, Habibian Dehkordi S. Quinic acid through mitigation of oxidative stress in the hippocampus exerts analgesic effect in male mice. Adv Herb Med 2021; 7(2): 1-11. CR - [26] Arya A, Al Obaidi MMJ, Shahid N, Noordin MIB, Looi CY, Wong WF, Khaing SL, Mustafa MR. Synergistic effect of quercetin and quinic acid by alleviating structural degeneration in the liver, kidney and pancreas tissues of STZ-induced diabetic rats: a mechanistic study. Food Chem Toxicol. 2014; 71: 183-196. https://doi.org/10.1016/j.fct.2014.06.010 CR - [27] Samimi S, Ardestani MS, Dorkoosh FA. Preparation of carbon quantum dots-quinic acid for drug delivery of gemcitabine to breast cancer cells. J Drug Deliv Sci Technol. 2021; 61: 102-187. https://doi.org/10.1016/j.jddst.2020.102287 CR - [28] Singh A, Chauhan SS, Tripathi V. Quinic acid attenuates oral cancer cell proliferation by downregulating cyclin D1 expression and Akt signaling. Pharmacogn Mag. 2018; 14(55): 14-19. CR - [29] Ayseli MT, Ayseli Yİ. Flavors of the future: Health benefits of flavor precursors and volatile compounds in plant foods. Trends Food Sci Technol. 2016; 48: 69-77. https://doi.org/10.1016/j.tifs.2015.11.005 CR - [30] Onakpoya I, Spencer E, Thompson M, Heneghan C. The effect of chlorogenic acid on blood pressure: a systematic review and meta-analysis of randomized clinical trials. J Hum Hypertens. 2015; 29(2): 77-81. https://doi.org/10.1038/jhh.2014.46 CR - [31] Santana Gálvez J, Cisneros Zevallos L, Jacobo Velázquez DA. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules. 2017; 22(3): 358-379. https://doi.org/10.3390/molecules22030358 CR - [32] Xu D, Hu L, Xia X, Song J, Li L, Song E, Song Y. Tetrachlorobenzoquinone induces acute liver injury, up-regulates HO-1 and NQO1 expression in mice model: the protective role of chlorogenic acid. Environ Toxicol Pharmacol. 2014; 37(3): 1212-1220. https://doi.org/10.1016/j.etap.2014.04.022 CR - [33] Liu CC, Zhang Y, Dai BL, Ma YJ, Zhang Q, Wang Y, Yang H. Chlorogenic acid prevents inflammatory responses in IL‑1β‑stimulated human SW‑1353 chondrocytes, a model for osteoarthritis. Mol Med Rep. 2017; 16(2): 1369-1675. https://doi.org/10.3892/mmr.2017.6698 CR - [34] Nieoczym D, Socała K, Raszewski G, Wlaź P. Effect of quercetin and rutin in some acute seizure models in mice. Prog Neuro-Psychopharmacol. Biol Psychiatry. 2014; 54: 50-58. https://doi.org/10.1016/j.pnpbp.2014.05.007 CR - [35] Javed H, Khan M, Ahmad A, Vaibhav K, Ahmad M, Khan A, Ashafaq M, Islam F, Siddiqui MS, Safhi MM, Islam F. Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience. 2012; 210: 340-352. https://doi.org/10.1016/j.neuroscience.2012.02.046 CR - [36] Selvaraj G, Kaliamurthi S, Thirungnasambandam R, Vivekanandan L, Balasubramanian T. Anti-nociceptive effect in mice of thillai flavonoid rutin. Biomed Environ Sci. 2014; 27(4): 295-259. https://doi.org/10.3967/bes2014.052 CR - [37] Srinivasan K, Kaul C, Ramarao P. Partial protective effect of rutin on multiple low dose streptozotocin-induced diabetes in mice. Indian J Pharmacol. 2005; 37(5): 327 CR - [38] Guardia T, Rotelli AE, Juarez AO, Pelzer LE. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco. 2001; 56(9): 683-687. https://doi.org/10.1016/S0014-827X(01)01111-9 CR - [39] Chen W, Jin M, Wu W. Experimental study on inhibitory effect of rutin against platelet activation induced by platelet activating factor in rabbits. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2002; 22(4): 283-285. PMID: 12584792 CR - [40] Dubey S, Ganeshpurkar A, Bansal D, Dubey N. Experimental studies on bioactive potential of rutin. Chron Young Sci. 2013; 4(2): 153-163. https://doi.org/10.4103/2229-5186.115556 CR - [41] Jung CH, Lee JY, Cho CH, Kim CJ. Anti-asthmatic action of quercetin and rutin in conscious guinea-pigs challenged with aerosolized ovalbumin. Arch Pharm Res. 2007; 30(12): 1599-1607. https://doi.org/10.1007/BF02977330 CR - [42] Alonso Castro AJ, Domínguez F, García Carrancá A. Rutin exerts antitumor effects on nude mice bearing SW480 tumor. Arch Med Res. 2013; 44(5): 346-351. https://doi.org/10.1016/j.arcmed.2013.06.002 CR - [43] Araruna MK, Brito SA, Morais Braga MF, Santos KK, Souza TM, Leite TR. Evaluation of antibiotic & antibiotic modifying activity of pilocarpine & rutin. Indian J Med Res. 2012; 135(2) :252-254. CR - [44] De Clercq E, Field HJ. Antiviral prodrug the development of successful prodrug strategies for antiviral chemotherapy. Br J Pharmacol. 2006; 147(1): 1-11. https://doi.org/10.1038/sj.bjp.0706446 CR - [45] Khan RA, Khan MR, Sahreen S. CCl4-induced hepatotoxicity: protective effect of rutin on p53, CYP2E1 and the antioxidative status in rat. Complement Altern Med. 2012; 12(1) :1-6. https://doi.org/10.1186/1472-6882-12-178 CR - [46] Zanvar AA, Badole SL, Shende PS, Hegde MV, Bodhankar SL. Cardiovascular effects of hesperidin: A flavanone glycoside. In: Watson RR, Preedy VR, Zibadi. (Eds). Polyphenols in human health and disease: Elsevier, Sweden, 2014. pp. 989-992. CR - [47] Lee J, Kim DH, Kim JH. Combined administration of naringenin and hesperetin with optimal ratio maximizes the anticancer effect in human pancreatic cancer via down regulation of FAK and p38 signaling pathway. Phytomedicine. 2019; 58: 152-162. https://doi.org/10.1016/j.phymed.2018.11.022 CR - [48] Wilmsen PK, Spada DS, Salvador M. Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. J Agric Food Chem. 2005; 53(12) :4757-4761. https://doi.org/10.1021/jf0502000 CR - [49] Panda S, Kar A. Antidiabetic and antioxidative effects of Annona squamosa leaves are possibly mediated through quercetin‐3‐O‐glucoside. Biofactors. 2007; 31(3‐4): 201-210. https://doi.org/10.1002/biof.5520310307 CR - [50] JiménezAliaga K, BermejoBescós P, Benedí J, MartínAragón S. Quercetin and rutin exhibit antiamyloidogenic and fibril disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci. 2011; 89(25-26): 939-945. https://doi.org/10.1016/j.lfs.2011.09.023 CR - [51] Sudan S, Rupasinghe HV. Quercetin-3-O-glucoside induces human DNA topoisomerase II inhibition, cell cycle arrest and apoptosis in hepatocellular carcinoma cells. Anticancer Res. 2014;34(4):1691-1699. CR - [52] Sholkamy EN, Ahmed MS, Yasser MM, Mostafa AA. Antimicrobial quercetin 3-O-glucoside derivative isolated from Streptomyces antibioticus strain ess_amA8. J King Saud Univ Sci. 2020; 32(3): 1838-1844. https://doi.org/10.1016/j.jksus.2020.01.026 CR - [53] Bilginer S, Gözcü S, Güvenalp Z. Molecular docking study of several seconder metabolites from medicinal plants as potential ınhibitors of COVID-19 main protease. Turk J Pharm Sci. 2022;19(4): 431-441. https://doi.org/10.4274/tjps.galenos.2021.83548 CR - [54] Taiwo FO, Oyedeji O, Osundahunsi MT. Antimicrobial and antioxidant properties of kaempferol-3-O-glucoside and 1-(4-hydroxyphenyl)-3-phenylpropan-1-one ısolated from the leaves of Annona muricata (Linn.). J Pharm Res Int. 2019; 26: 1-13. https://doi.org/10.9734/JPRI/2019/v26i330138 CR - [55] Zang Y, Zhang D, Yu C, Jin C, Igarashi K. Antioxidant and hepatoprotective activity of kaempferol 3-O-β-D-(2, 6-di-O-α-L-rhamnopyranosyl) galactopyronoside against carbon tetrachloride-induced liver injury in mice. Food Sci Biotechnol. 2017; 26(4): 1071-1076. https://doi.org/10.1007/s10068-017-0170-7 CR - [56] Zarei A, Ramazani A, Pourmand S, Sattari A, Rezaei A, Moradi S. In silico evaluation of COVID-19 main protease interactions with honeybee natural products for discovery of high potential antiviral compounds. Nat Prod Res. 2022; 36(16): 4254-4260. https://doi.org/10.1080/14786419.2021.1974435 CR - [57] Parveen Z, Deng Y, Saeed MK, Dai R, Ahamad W, Yu YH. Antiinflammatory and analgesic activities of Thesium chinense Turcz extracts and its major flavonoids, kaempferol and kaempferol-3-O-glucoside. J Pharm Soc Jpn. 2007; 127(8): 1275-1279. https://doi.org/10.1248/yakushi.127.1275 CR - [58] Gözcü S, Ugan RA, Özbek H, Gündoğdu B, Guvenalp Z. Antidiabetic and antioxidant properties of Paeonia mascula L.: In vitro and in vivo studies, and phytochemical analysis. Fitoterapia. 2023; 170: 105658. https://doi.org/10.1016/j.fitote.2023.105658 CR - [59] Wang Y, Tang C, Zhang H. Hepatoprotective effects of kaempferol 3-O-rutinoside and kaempferol 3-O-glucoside from Carthamus tinctorius L. on CCl4-induced oxidative liver injury in mice. J Food Drug Anal. 2015; 23(2): 310-317. https://doi.org/10.1016/j.jfda.2014.10.002 CR - [60] Ahmad M, Gilani AUH, Aftab K, Ahmad VU. Effects of kaempferol‐3‐O‐rutinoside on rat blood pressure. Phytother Res. 1993; 7(4): 314-316. https://doi.org/10.1002/ptr.2650070411 CR - [61] Liana L, Rizal R, Widowati W, Fioni F, Akbar K, Fachrial E, Ehrich Lister N. Antioxidant and anti-hyaluronidase activities of dragon fruit peel extract and kaempferol-3-O-rutinoside. J Kedokteran Brawijaya. 2019; 30(4): 247-252. https://doi.org/10.21776/ub.jkb.2019.030.04.3 CR - [62] Hu WH, Dai DK, Zheng BZY, Duan R, Chan GKL, Dong TTX, Qin QW, Wah-Keung Tsim K. The binding of kaempferol-3-O-rutinoside to vascular endothelial growth factor potentiates anti-inflammatory efficiencies in lipopolysaccharide-treated mouse macrophage RAW264. 7 cells. Phytomedicine. 2021; 80: 153400. https://doi.org/10.1016/j.phymed.2020.153400 CR - [63] Iqbal S, Bhanger M. Effect of season and production location on antioxidant activity of Moringa oleifera leaves grown in Pakistan. J Food Compost Anal. 2006; 19(6-7): 544-551. https://doi.org/10.1016/j.jfca.2005.05.001 CR - [64] Soh Y, Kim JA, Sohn NW, Lee KR, Kim SY. Protective effects of quinic acid derivatives on tetrahydropapaveroline-induced cell death in C6 glioma cells. Biol Pharm Bull. 2003; 26(6): 803-807. https://doi.org/10.1248/bpb.26.803 CR - [65] Samanta SK, Bhattacharya K, Mandal C, Pal BC. Identification and quantification of the active component quercetin 3-O-rutinoside from Barringtonia racemosa, targets mitochondrial apoptotic pathway in acute lymphoblastic leukemia. J Asian Nat Prod Res. 2010; 12(8): 639-648. https://doi.org/10.1080/10286020.2010.489040 CR - [66] Feng R, Lu Y, Bowman LL, Qian Y, Castranova V, Ding M. Inhibition of activator protein-1, NF-κB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. J Biol Chem. 2005; 280(30): 2788-2795. https://doi.org/10.1074/jbc.M503347200 CR - [67] Gözcü S, Polat KH. Thermosensitive ın situ gelling system for dermal drug delivery of rutin. Turk J Pharm Sci. 2023; 20(2): 78-83. https://doi.org/10.4274/tjps.galenos.2022.00334 CR - [68] Benali T, Bakrim S, Ghchime R, Benkhaira N, El Omari N, Balahbib A. Taha D, Zengin G, Hasan MM, Bibi S, Bouyahya A Pharmacological insights into the multifaceted biological properties of quinic acid. Biotechnol Genet Eng Rev. 2022; 1: 1-30. https://doi.org/10.1080/02648725.2022.2122303 CR - [69] Holetz FB, Pessini GL, Sanches NR, Cortez DAG, Nakamura CV, Dias Filho BP. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem Inst Oswaldo Cruz. 2002; 97: 1027-1031. https://doi.org/10.1590/S0074-02762002000700017 CR - [70] Bai J, Wu Y, Bu Q, Zhong K, Gao H. Comparative study on antibacterial mechanism of shikimic acid and quinic acid against Staphylococcus aureus through transcriptomic and metabolomic approaches. LWT. 2022; 153: 112441. https://doi.org/10.1016/j.lwt.2021.112441 CR - [71] Rigano D, Formisano C, Basile A, Lavitola A, Senatore F, Rosselli S, Bruno M. Antibacterial activity of flavonoids and phenylpropanoids from Marrubium globosum ssp. libanoticum. Phytother Res. 2007; 21(4): 395-397. https://doi.org/10.1002/ptr.2061 CR - [72] Mager D. Bacteria and cancer: cause, coincidence or cure? A review. J Transl Med. 2006; 4(1): 1-18. https://doi.org/10.1186/1479-5876-4-14 CR - [73] Martin HM, Campbell BJ, Hart CA, Mpofu C, Nayar M, Singh R, Englyst H, Williams HF, Rhodes JM. Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology. 2004; 127(1): 80-93. https://doi.org/10.1053/j.gastro.2004.03.054 CR - [74] Kim NH, Park JP, Jeon SH, Lee YJ, Choi HJ, Jeong KM, Lee JG, Choi SP, Lim JH, Kim YH, Kim YS, Kim YM, Hwang MH, Cho JW, Moon Y, Oh SK, Jeong JW. Purulent pericarditis caused by group G streptococcus as an initial presentation of colon cancer. J Korean Med Sci. 2002; 17(4): 571-573. https://doi.org/10.3346/jkms.2002.17.4.571 CR - [75] Kullander J, Forslund O, Dillner J. Staphylococcus aureus and squamous cell carcinoma of the skin. Cancer Epidemiol Biomarkers Prev. 2009; 18(2): 472-478. https://doi.org/10.1158/1055-9965.EPI-08-0905 CR - [76] Yilmaz MA. Simultaneous quantitative screening of 53 phytochemicals in 33 species of medicinal and aromatic plants: A detailed, robust and comprehensive LC–MS/MS method validation. Ind Crops Prod. 2020; 149: 112-147. https://doi.org/10.1016/j.indcrop.2020.112347 CR - [77] Zengin G, Sarikurkcu C, Aktumsek A, Ceylan R. Sideritis galatica Bornm.: a source of multifunctional agents for the management of oxidative damage, Alzheimer's's and diabetes mellitus. J Funct Foods. 2014; 11: 538-547. https://doi.org/10.1016/j.jff.2014.08.011 CR - [78] Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002; 10(3) :178-182. https://doi.org/10.38212/2224-6614.2748 CR - [79] Liyana Pathirana CM, Shahidi F. Antioxidant activity of commercial soft and hard wheat (Triticum aestivum L.) as affected by gastric pH conditions. J Agric Food Chem. 2005; 53(7): 2433-2440. https://doi.org/10.1021/jf049320i CR - [80] Oyaizu M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet. 1986; 44(6): 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307 CR - [81] Aydın A, Ökten S, Erkan S, Bulut M, Özcan E, Tutar A, Eren T. In vitro anticancer and antibacterial activities of brominated ındeno [1, 2‐b] qinoline amines supported with molecular docking and MCDM. ChemistrySelect. 2021; 6(13): 3286-3295. https://doi.org/10.1002/slct.202004753 CR - [82] Aydin A, Karadağ A, Tekin Ş, Korkmaz N, Özdemir A. Two new coordination polymers containing dicyanidoargentate (I) and dicyanidoaurate (I): synthesis and characterization, and a detailed in vitro investigation of their anticancer activities on some cancer cell lines. Turk J Chem. 2015; 39(3): 532-549. https://doi.org/10.3906/kim-1412-13 CR - [83] Elshikh M, Ahmed S, Funston S, Dunlop P, McGaw M, Marchant R, Banat IM. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol Lett. 2016; 38(6): 1015-1019. https://doi.org/10.1007/s10529-016-2079-2 UR - https://dergipark.org.tr/en/pub/jrespharm/issue//1687217 L1 - https://dergipark.org.tr/en/download/article-file/4820225 ER -