TY - JOUR T1 - Design, synthesis, and biological evaluation of novel N’-(4-oxo-4H-chromen-3-yl) methylene propanehydrazides for Alzheimer’s disease AU - Kılıç, Burcu PY - 2025 DA - July JF - Journal of Research in Pharmacy JO - J. Res. Pharm. PB - Marmara University WT - DergiPark SN - 2630-6344 SP - 1344 EP - 1356 VL - 28 IS - 5 LA - en AB - Alzheimer’s Disease (AD) is one of the most devastating chronic health problems of the last few decades. Unfortunately, current treatment and care options for AD are insufficient, making it a prominent topic for drug discovery studies. Currently, AD drug development studies have focused on the strategy of multitarget directed ligands (MTDLs). Following this strategy, we designed new ChE inhibitors with additional antioxidant and metal chelator effects. In this research, we designed and synthesized novel eight N’-(4-oxo-4H-chromen-3-yl)methylene propanehydrazide derivatives. We then evaluated the inhibition potency of all final compounds for cholinesterase enzymes. Among them, (6f) (IC50 AChE=16.91 µM) was found to be the most potent acetylcholinesterase inhibitor. Additionally, (6d) (IC50’s AChE=26.91 µM and BChE=47.94 µM) exhibited dual cholinesterase inhibitor activity. Moreover, we investigated all title compounds for their antioxidant (DPPH, ORAC) and metal chelator activities. According to the ORAC-FL results, all the compounds exhibited good antioxidant activity ranging from 4.082 to 16.715 Trolox equivalents. We also observed chelator effects of all compounds for Cu(II), Fe(II), and Zn(II) ions at varying rates. Furthermore, we assessed the in-silico physicochemical parameters of the compounds to evaluate their drug-likeness or druggability. KW - Chromene KW - cholinesterase inhibition KW - antioxidant KW - metal-chelator KW - alzheimer’s disease CR - [1] World Alzheimer Report 2019: Attitudes to Dementia. Alzheimer’s Disease International (ADI) 2019. https://www.alzint.org/u/WorldAlzheimerReport2019.pdf (accessed on 23 October 2023). CR - [2] 2023 Alzheimer's disease facts and figures. Alzheimer's & Dementia. 2023; 19(4): 1598-1695. https://www.alz.org/media/documents/alzheimers-facts-and-figures.pdf (accessed on 23 October 2023). CR - [3] Kumar A, Singh A, Ekavali. A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol Rep. 2015; 67(2): 195-203. https://doi.org/10.1016/j.pharep.2014.09.004 CR - [4] DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019; 14(1): 32. https://doi.org/10.1186/s13024-019-0333-5 CR - [5] Blaikie L, Kay G, Kong Thoo Lin P. Current and emerging therapeutic targets of alzheimer's disease for the design of multi-target directed ligands. MedChemComm. 2019; 10(12): 2052-2072. http://dx.doi.org/10.1039/C9MD00337A CR - [6] Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, Melchiorre C. Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem. 2008; 51(3): 347-372. https://doi.org/10.1021/jm7009364 CR - [7] Li Q, Xing S, Chen Y, Liao Q, Xiong B, He S, Lu W, Liu Y, Yang H, Li Q, Feng F, Liu W, Chen Y, Sun H. Discovery and biological evaluation of a novel highly potent selective butyrylcholinsterase inhibitor. J Med Chem. 2020; 63(17): 10030-10044. https://doi.org/10.1021/acs.jmedchem.0c01129 CR - [8] Chen Y, Lin H, Yang H, Tan R, Bian Y, Fu T, Wei Li, Wu L, Pei Y , Sun H. Discovery of new acetylcholinesterase and butyrylcholinesterase inhibitors through structure-based virtual screening. RSC Adv. 2017; 7(6): 3429-3438. https://doi.org/10.1039/c6ra25887e CR - [9] Jing L, Wu G, Kang D, Zhou Z, Song Y, Liu X, Zhan P. Contemporary medicinal-chemistry strategies for the discovery of selective butyrylcholinesterase inhibitors. Drug Discov Today. 2019; 24(2): 629-635. https://doi.org/10.1016/j.drudis.2018.11.012 CR - [10] Panek D, Pasieka A, Latacz G, Zaręba P, Szczęch M, Godyń J, Chantegreil F, Nachon F, Brazzolotto X, Wiercioch AS, Walczak M, Smolik M, Sałat K, Höfner G, Wanner K, Więckowska A, Malawska B. Discovery of new, highly potent and selective inhibitors of BuChE - design, synthesis, in vitro and in vivo evaluation and crystallography studies. Eur J Med Chem. 2023; 249: 115135. https://doi.org/10.1016/j.ejmech.2023.115135 CR - [11] Wichur T, Więckowska A, Więckowski K, Godyń J, Jończyk J, Valdivieso ÁdR, Panek D, Pasieka A, Sabaté R, Knez D, Gobec S, Malawska B. 1-Benzylpyrrolidine-3-amine-based BuChE inhibitors with anti-aggregating, antioxidant and metal-chelating properties as multifunctional agents against Alzheimer’s disease. Eur J Med Chem. 2020; 187: 111916. https://doi.org/10.1016/j.ejmech.2019.111916 CR - [12] Zhao Y, Zhao B. Oxidative stress and the pathogenesis of Alzheimer's disease. Oxid Med Cell Longev. 2013; 2013: 316523. https://doi.org/10.1155/2013/316523 CR - [13] Singh A, Kukreti R, Saso L, Kukreti S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules. 2019; 24(8):1583. https://doi.org/10.3390/molecules24081583 CR - [14] Kenche VB, Barnham KJ. Alzheimer's disease & metals: therapeutic opportunities. Br J Pharmacol. 2011; 163(2): 211-219. https://doi.org/10.1111/j.1476-5381.2011.01221.x CR - [15] Mohsin NuA, Irfan M, Hassan Su, Saleem U. Current strategies in development of new chromone derivatives with diversified pharmacological activities: A review. Pharm Chem J. 2020; 54(3): 241-257. https://doi.org/10.1007/s11094-020-02187-x CR - [16] Hussain G, Zhang L, Rasul A, Anwar H, Sohail MU, Razzaq A, Aziz N, Shabbir A, Ali M, Sun T. Role of plant-derived flavonoids and their mechanism in attenuation of alzheimer's and Parkinson's Diseases: An update of recent data. Molecules. 2018; 23(4): 814. https://doi.org/10.3390/molecules23040814 CR - [17] Costa M, Dias TA, Brito A, Proença F. Biological importance of structurally diversified chromenes. Eur J Med Chem. 2016; 123: 487-507. https://doi.org/10.1016/j.ejmech.2016.07.057 CR - [18] Jiang N, Huang Q, Liu J, Liang N, Li Q, Li Q, Xie S. Design, synthesis and biological evaluation of new coumarin-dithiocarbamate hybrids as multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem. 2018; 146: 287-298. https://doi.org/10.1016/j.ejmech.2018.01.055 CR - [19] Jalili-Baleh L, Nadri H, Forootanfar H, Samzadeh-Kermani A, Küçükkılınç TT, Ayazgok B, Rahimifard M, Baeeri M, Doostmohammadi M, Firoozpour L, Nasir S, Bukhari A, MR Ganjali, Emami S, Khoobi M, Foroumadi A. Novel 3-phenylcoumarin–lipoic acid conjugates as multi-functional agents for potential treatment of Alzheimer's disease. Bioorg Chem. 2018; 79: 223-234. https://doi.org/10.1016/j.bioorg.2018.04.030 CR - [20] Sun Q, Peng D-Y, Yang S-G, Zhu X-L, Yang W-C, Yang G-F. Syntheses of coumarin–tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase. Bioorg Med Chem. 2014; 22(17): 4784-4791. https://doi.org/10.1016/j.bmc.2014.06.057 CR - [21] Wang D, Hu M, Li X, Zhang D, Chen C, Fu J, Shao S, Shi G, Zhou Y, Wu S, Zhang T . Design, synthesis, and evaluation of isoflavone analogs as multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem. 2019; 168: 207-220. https://doi.org/10.1016/j.ejmech.2019.02.053 CR - [22] Estrada-Valencia M, Herrera-Arozamena C, Pérez C, Viña D, Morales-García JA, Pérez-Castillo A, Viña D, Garcia J, Castillo AP, Ramos E, Romeo A, Laurini E, Pricl S. New flavonoid – N,N-dibenzyl(N-methyl)amine hybrids: Multi-target-directed agents for Alzheimer´s disease endowed with neurogenic properties. J Enzyme Inhib Med Chem. 2019; 34(1): 712-727. https://doi.org/10.1080/14756366.2019.1581184 CR - [23] Sharma K. Chromone scaffolds in the treatment of Alzheimer's and Parkinson's Disease: An overview. ChemistrySelect. 2022; 7(18): e202200540. https://doi.org/10.1002/slct.202200540 CR - [24] Kilic B, Bardakkaya M, Ilıkcı Sagkan R, Aksakal F, Shakila S, Dogruer DS. New thiourea and benzamide derivatives of 2-aminothiazole as multi-target agents against Alzheimer's disease: Design, synthesis, and biological evaluation. Bioorg Chem. 2023; 131: 106322. https://doi.org/10.1016/j.bioorg.2022.106322 CR - [25] Erdogan M, Kilic B, Sagkan RI, Aksakal F, Ercetin T, Gulcan HO, Dogruer DS. Design, synthesis and biological evaluation of new benzoxazolone/benzothiazolone derivatives as multi-target agents against Alzheimer's disease. Eur J Med Chem. 2021; 212: 113124. https://doi.org/10.1016/j.ejmech.2020.113124 CR - [26] Kilic B, Erdogan M, Gulcan HO, Aksakarl F, Oruklu N, Bagriacik EU, Dogruer DS. Design, synthesis and investigation of new diphenyl substituted pyridazinone derivatives as both cholinesterase and a beta-aggregation inhibitors. Med Chem. 2019; 15(1): 59-76. https://dx.doi.org/10.2174/1573406414666180524073241 CR - [27] Kilic B, Gulcan HO, Aksakal F, Ercetin T, Oruklu N, Umit Bagriacik E, Dogruer DS. Design and synthesis of some new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring and the investigation of their inhibitory potential on in-vitro acetylcholinesterase and butyrylcholinesterase. Bioorg Chem. 2018; 79: 235-249. https://doi.org/10.1016/j.bioorg.2018.05.006 CR - [28] Kilic B, Gulcan HO, Yalcın M, Aksakal F, Dimoglo A, Sahin MF. Synthesis of some new 1 (2H)-Phthalazinone derivatives and evaluation of their acetylcholinesterase and butyrylcholinesterase inhibitory activities. Lett Drug Des Discov. 2017; 14(2): 159-166. https://doi.org/10.1007/s00044-014-1205-8 CR - [29] Yamali C, Gulcan HO, Kahya B, Cobanoglu S, Sukuroglu MK, Dogruer DS. Synthesis of some 3(2H)-pyridazinone and 1(2H)-phthalazinone derivatives incorporating aminothiazole moiety and investigation of their antioxidant, acetylcholinesterase, and butyrylcholinesterase inhibitory activities. Med Chem Res. 2015; 24(3): 1210-1217. https://doi.org/10.1007/s00044-014-1205-8 CR - [30] Bardakkaya M, Kilic B, Sagkan RI, Aksakal F, Shakila S, Dogruer DS. Synthesis and evaluation of multitarget new 2-aminothiazole derivatives as potential anti-Alzheimer's agents. Arch Pharm. 2023; 356(8): 2300054. https://doi.org/10.1002/ardp.202300054 CR - [31] Ostrowska K. Coumarin-piperazine derivatives as biologically active compounds. Saudi Pharm J. 2020; 28(2): 220-232. https://doi.org/10.1016/j.jsps.2019.11.025 CR - [32] Bajda M, Wieckowska A, Hebda M, Guzior N, Sotriffer CA, Malawska B. Structure-based search for new inhibitors of cholinesterases. Int J Mol Sci. 2013; 14(3): 5608-5632. https://doi.org/10.3390/ijms14035608 CR - [33] Abouel-Enein SA, Emam SM, Abdel-Satar EM. Bivalent metal chelates with pentadentate azo-schiff base derived from nicotinic hydrazide: preparation, structural elucidation, and pharmacological activity. Chem Biodivers. 2023; 20(6): e202201223. https://doi.org/10.1002/cbdv.202201223 CR - [34] Cao L, Zhang L, Cui P. Synthesis of 3-(3-Alkyl-5-thioxo-1H-4,5-dihydro-1,2,4-triazol-4-yl)aminocarbonylchromones. Chem Heterocycl Compd (NY). 2004; 40(5): 635-640. https://doi.org/10.1023/B:COHC.0000037320.27881.27 CR - [35] Munir R, Javid N, Zia-ur-Rehman M, Zaheer M, Huma R, Roohi A, Athar Mm. Synthesis of novel N-acylhydrazones and their C-N/N-N bond conformational characterization by NMR spectroscopy. Molecules. 2021; 26(16): 4908. https://doi.org/10.3390/molecules26164908 CR - [36] Palla G, Predieri G, Domiano P, Vignali C, Turner W. Conformational behaviour and E/Z isomerization of N-acyl and N-aroylhydrazones. Tetrahedron. 1986; 42(13): 3649-3654. https://doi.org/10.1016/S0040-4020(01)87332-4 CR - [37] Bortolami M, Pandolfi F, De Vita D, Carafa C, Messore A, Di Santo R, Feroci M, Costi R, Chiarotto I, Bagetta D, Alcaro S, Colone M, Stringaro A, Scipione L. New deferiprone derivatives as multi-functional cholinesterase inhibitors: design, synthesis and in vitro evaluation. Eur J Med Chem. 2020; 198: 112350. https://doi.org/10.1016/j.ejmech.2020.112350 CR - [38] Liu Y, Di Y, Liu M, Qiao C, Gao X, Zhou C. Synthesis, thermodynamic properties and Hirshfeld surface analysis of 2-[(4-methyl-benzoyl)-hydrazone]-propionic acid. J Mol Struct. 2022; 1260: 132792. https://doi.org/10.1016/j.molstruc.2022.132792 CR - [39] Selvam P, Sathiyakumar S, Srinivasan K, Premkumar T. A Copper(II) complex of a new hydrazone: A solid-state single source precursor for the preparation of both Cu and CuO nanoparticles. J Mol Struct. 2019; 1177: 469-475. https://doi.org/10.1016/j.molstruc.2018.09.082 CR - [40] Purandara H, Raghavendra S, Foro S, Patil P, Gowda BT, Dharmaprakash SM, Vishwanatha P. Synthesis, spectroscopic characterization, crystal structure, Hirshfeld surface analysis and third-order nonlinear optical properties of 2-(4-chlorophenoxy)-N'-[(1E)-1-(4-methylphenyl) ethylidene] acetohydrazide. J Mol Struct. 2019; 1185: 205-211. https://doi.org/10.1016/j.molstruc.2019.02.079 CR - [41] Schrödinger Release 2021-3: QikProp, Schrödinger, LLC, New York, NY, 2021. UR - https://dergipark.org.tr/en/pub/jrespharm/issue//1688801 L1 - https://dergipark.org.tr/en/download/article-file/4826554 ER -