TY - JOUR T1 - Havalimanlarında Seviye 5 Karbon Akreditasyonu Odağında Sürdürülebilirlik Uygulamaları: Royal Schiphol Grup Örneği TT - Sustainability Practices at Airports within the Scope of Level 5 Carbon Accreditation: The Case of Royal Schiphol Group AU - Göçmen, Didem PY - 2025 DA - September Y2 - 2025 DO - 10.35229/jaes.1689542 JF - Journal of Anatolian Environmental and Animal Sciences JO - JAES PB - Bülent VEREP WT - DergiPark SN - 2548-0006 SP - 625 EP - 637 VL - 10 IS - 5 LA - tr AB - Havacılık sektörü, karbon emisyonlarını azaltma ve sürdürülebilirlik hedeflerine ulaşma konusunda, zorlukları ve beraberinde yenilikçi çözüm fırsatlarını bir arada bulundurmaktadır. Havalimanlarının doğrudan kontrolü dışında kalan karbon emisyonlarının yüksekliği, sürdürülebilirlik stratejilerinin yalnızca operasyonel süreçlerle sınırlı kalmamasını; tedarik zinciri, havayolları, yolcular ve yerel toplulukları da kapsayan çok paydaşlı ve entegre karbon yönetimi yaklaşımları geliştirilmesini gerekli kılmaktadır. Bu çalışmada, Royal Schiphol Grup örneği üzerinden havalimanlarında uygulanan sürdürülebilirlik politikaları incelenmekte; Airport Carbon Accreditation (ACA) programının seviyeleri ve özellikle sınırlı sayıda havalimanının ulaştığı Seviye 5’in gereklilikleri ortaya konmaktadır. Schiphol Havalimanı’nın bu seviyeye erişim sürecinde benimsediği çevresel ve yönetsel uygulamalar, nitel araştırma yöntemlerinden doküman analiziyle incelenmektedir. Elde edilen bulgular, 2021–2024 yılları arasında yolcu sayısında %162 oranında artış yaşanmasına rağmen Scope 1 emisyonlarının %22 azaltıldığını ve böylece yolcu başına düşen karbon emisyonunun anlamlı ölçüde düşürüldüğünü ortaya koymaktadır. Bu durum, operasyonel verimliliğin sürdürülebilirlik hedeflerine doğrudan katkı sunduğunu göstermektedir. Ayrıca, karbon emisyonlarının azaltılmasına yönelik dijital yönetim sistemleri, yapay zekâ uygulamaları, yenilenebilir enerji kullanımı, sürdürülebilir havacılık yakıtları ve paydaş iş birlikleri gibi bütüncül yaklaşımların etkinliğine dikkat çekilmektedir. Schiphol Group bünyesindeki havalimanlarında uygulanan yenilenebilir enerji politikaları, atık yönetimi, sürdürülebilir ulaşım çözümleri, tedarik zinciri entegrasyonu ve dijitalleşme stratejilerinin, karbon yönetiminde kapsamlı bir dönüşüm sağladığı görülmektedir. Çalışma genelinde ulaşılan sonuçlar, karbon yönetiminin yalnızca teknik çözümlerle değil; stratejik ve yönetsel yaklaşımlarla desteklendiğinde daha etkili ve sürdürülebilir sonuçlar doğurabildiğini ortaya koymaktadır. Ayrıca çevresel sürdürülebilirliğin, ekonomik büyüme ile çelişmediği; aksine teknolojik yenilikler ve kurumsal stratejilerle uyumlu şekilde ilerleyebileceği vurgulanmaktadır. KW - Sürdürülebilirlik KW - Havalimanı İşletmeciliği KW - Karbon emisyonu KW - Havalimanı karbon akreditasyonu N2 - The aviation sector simultaneously encompasses challenges and innovative solution opportunities in achieving carbon emission reduction and sustainability goals. The high volume of carbon emissions beyond the direct control of airports necessitates that sustainability strategies extend beyond operational processes and involve the development of multi-stakeholder and integrated carbon management approaches that include supply chains, airlines, passengers and local communities. This study examines the sustainability policies implemented at airports through the example of the Royal Schiphol Group, highlighting the levels of the Airport Carbon Accreditation (ACA) program, with particular emphasis on the requirements of Level 5, which only a limited number of airports have achieved. The environmental and managerial practices adopted by Schiphol Airport in the process of attaining this level are analyzed through document analysis, one of the qualitative research methods. The findings reveal that despite a 162% increase in passenger numbers between 2021 and 2024, Scope 1 emissions were reduced by 22%, leading to a significant decrease in per-passenger carbon emissions. This demonstrates that operational efficiency contributes directly to sustainability goals. Additionally, the effectiveness of holistic approaches such as digital management systems, artificial intelligence applications, renewable energy use, sustainable aviation fuels and stakeholder collaborations in reducing carbon emissions is emphasized. It is observed that practices implemented at airports operated by the Schiphol Group-such as renewable energy policies, waste management, sustainable transportation solutions, supply chain integration and digitalization strategies-have led to a comprehensive transformation in carbon management. The overall results of the study indicate that carbon management becomes more effective and sustainable when supported not only by technical solutions but also by strategic and managerial approaches. Furthermore, it is highlighted that environmental sustainability does not conflict with economic growth; on the contrary, it can progress in harmony with technological innovations and institutional strategies. CR - ACA. (2024). Level 5: Transformation. Airport Carbon Accreditation. https://www.airportcarbonaccreditation.org/about/7-levels-of-accreditation/level-5/ CR - ACI. (2024). Airport Carbon Accreditation Annual Report. Airports Council International. https://www.aci-europe.org/ CR - ACA. (2025). Updated framework for Level 5 accreditation: Absolute emissions reduction. Airport Council International. CR - ACI. (2023). Airport Carbon Accreditation Application Manual (Version 14). Airport Carbon Accreditation. https://www.airportcarbonaccreditation.org/wp-content/uploads/2023/12/Airport-Carbon-Accreditation-Application-Manual-14-FINAL-01112023.pdf CR - Ammoury, M., & Salman, B. (2024). Advancing Sustainability and Resilience of Airports through Deployment of New Technologies in the Aftermath of the COVID-19 Pandemic. ASCE OPEN: Multidisciplinary Journal of Civil Engineering, 2(1), 04024006. CR - Andreopoulou, Z., & Gkantalidou, S. (2023). Sustainable practices and green policies in airports: the case of airport of Thessaloniki Makedonia. In IOP Conference Series: Earth and Environmental Science (Vol. 1196, No. 1, p. 012052). IOP Publishing. DOI: 10.1088/1755-1315/1196/1/012052 CR - Atkins. (2023). First embodied carbon tool for airport terminals developed. IATA. https://www.iata.org/en/pressroom/2023-releases/2023-07-17-01/ CR - Babuder, D., Lapko, Y., Trucco, P., & Taghavi, R. (2024). Impact of emerging sustainable aircraft technologies on the existing operating ecosystem. Journal of Air Transport Management, 115, 102524. DOI: 10.1016/j.jairtraman.2023.102524 CR - Bahman, N. (2023). Airport sustainability through life cycle assessments: A systematic literature review. Sustainable Development, 31(3), 1268-1277. CR - Baxter, G. (2023). Towards Carbon Neutral Airport Operations Through the Use of Renewable Energy Sources: The Case of Chhatrapati Shivaji Maharaj and Indira Gandhi International Airports, India. International Journal of Environment, Agriculture and Biotechnology, 8(2), 084-100. DOI: 10.22161/ijeab.82.9 CR - Baxter, G. (2022). Sustainable Airport Water Management: The Case of Hong Kong International Airport. International Journal of Environment, Agriculture and Biotechnology, 7(5), 016-032. DOI: 10.22161/ijeab.75.3 CR - British Airways. (2024). British Airways outlines investment in sustainable ground equipment. Business Traveller. https://www.businesstraveller.com/business-travel/2024/03/19/british-airways-outlines-investment-in-sustainable-ground-equipment/ CR - Budd, L., & Ison, S. (2021). Public utility or private asset? The evolution of UK airport ownership. Case Studies on Transport Policy, 9(1), 212-218. CR - Caswell, M. (2024). British Airways outlines investment in sustainable ground equipment. Business Traveller. https://www.businesstraveller.com/business-travel/2024/03/19/british-airways-outlines-investment-in-sustainable-ground-equipment/ CR - CDP. (2023). Strengthening the chain: Why Scope 3 action needs to be faster, bolder and more widespread. CDP Worldwide. https://www.cdp.net/en/research/global-reports/supply-chain-report-2023 CR - Chang, Y. H., & Yeh, C. H. (2016). Managing corporate social responsibility strategies of airports: The case of Taiwan’s Taoyuan International Airport Corporation. Transportation Research Part A: Policy and Practice, 92, 338-348. CR - Changi Airport. (2022). Changi Airport Group. (2022). Changi Airport sustainability report, 2022 CR - De Groot, M. (2024). How can a balanced ecosystem of technology, collaboration and innovation build greener airports?” The case study of Groningen Airport Eelde. Journal of Airport Management, 18(3), 309-316. DOI: 10.69554/gwjj4841 CR - Doğan, M.E. (2018). Küresel Kamusal Mal Kapsamındaki Hava Kirliliğine Neden Olan Etkenlerin Havacılık Sektörü Odaklı İncelenmesi. Gazi Üniversitesi Sosyal Bilimler Dergisi, 5(13), 142-156. CR - Dube, K., & Nhamo, G. (2019). Climate change and the aviation sector: A focus on the Victoria Falls tourism route. Environmental Development, 29, 5-15. CR - Elkington, J., & Rowlands, I. H. (1999). Cannibals with forks: The triple bottom line of 21st century business. Alternatives Journal, 25(4), 42. CR - Ferreira, D., Baltazar, M.E., & Santos, L.(2024) Developing a comprehensive framework for assessing airports’ environmental sustainability. Sustainability, 16, 6651. DOI: 10.3390/su16156651 CR - Fraport. (2024). Climate protection; Sustainable for the future - Frankfurt Airport - Terminal 3. Retrieved April 25, 2025, from https://www.fraport.com/en/sustainability/environment-and-climate/climate-protection.html CR - GMR Engineering & Management Services. (2024). The impact of electric ground support equipment (GSE) on airport sustainability and efficiency. https://www.gmrgems.com/blogs/the-impact-of-electric-ground-support-equipment-on-airportgmrgems.com CR - Goh, H.H., Suo, W., Liang, X., Zhang, D., Dai, W., Kurniawan, T.A., & Goh, K.C. (2024). An adaptive energy management strategy for airports to achieve carbon neutrality by 2050 via waste, wind, and solar power. Frontiers in Energy Research, 12, 1365650. DOI: 10.3389/fenrg.2024.1365650 CR - Göçmen, D. (2024). Havalimanlarında inovasyon uygulamalarının karşılaştırılması. Akıllı Ulaşım Sistemleri Ve Uygulamaları Dergisi, 7(2), 127-145. DOI: 10.51513/jitsa.1436536 CR - Gürsel, S., Demir, R., & Rodoplu, H. (2023). The effect of digitalisation on sustainability and smart airport. International Journal of Sustainable Aviation, 9(1), 26-40. CR - Heathrow Airport Limited. (2023). A year of progress recorded for Heathrow’s sustainability strategy. Heathrow Media Centre. CR - Heathrow Airport. (2022). Heathrow's Net Zero Plan. https://www.heathrow.com/content/dam/heathrow/web/common/documents/company/heathrow-2-0-sustainability/futher-reading/Heathrow%20Net%20Zero%20Plan%20FINAL.pdf https://mediacentre.heathrow.com/pressrelease/detail/14991 CR - ICAO. (2023). Annual Report of the Council. International Civil Aviation Organization. https://www.icao.int/about-icao/Pages/annual-reports.aspx CR - IEA. (2023). Aviation: Tracking Clean Energy Progress. International Energy Agency. https://www.iea.org/energy-system/transport/aviation CR - Kirchherr, J., Reike, D., & Hekkert, M. (2018). Conceptualizing the circular economy. Resources, Conservation and Recycling, 127, 221-232. DOI: 10.1016/j.resconrec.2017.09.005 CR - Korba, P., Koščáková, M., Főző, L., & Sekelová, I. (2022). Current state and possible challenges in the development of green airports. In 2022 New Trends in Civil Aviation (NTCA) (pp. 191-197). IEEE. CR - Lee, D.S., Fahey, D.W., Skowron, A., Allen, M.R., Burkhardt, U., Chen, Q., ..., & Wilcox, L.J. (2020). The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmospheric Environment, 244, 117834. DOI: 10.1016/j.atmosenv.2020.117834 CR - Li, Y., & He, Y. (2024). Unraveling Korea’s energy challenge: The consequences of carbon dioxide emissions and energy use on economic sustainability. Sustainability, 16(5), 2074). DOI: 10.3390/su17030855 CR - Lyudmila, C. (2024). Decarbonization With The Help of Artificial Intelligence-one of The Prıorıtıes of International Civil Aviation. Contemporary Issues in Artificial Intelligence, 1. DOI: 10.69635/ciai.2025.8 CR - Marcellin, F. (2025). Schiphol’s flight path to a circular future. Airport Technology. https://www.airport-technology.com/features/schiphols-flight-path-to-a-circular-future/ CR - Mazraani, G., & Tucci, M. (2025). The role of environmental management systems (EMS) in driving organizational development and environmental sustainability. American Journal of Environment and Climate, 4(1). DOI: 10.54536/ajec.v4i1.3748 CR - Mcguinness, J. (2024). Embedding net zero ambition at Dublin Airport: A world to connect and a future to protect. Journal of Airport Management, 18(4), 357-366. CR - Miller, I., & Rutledge, A.S. (2025). Airport electrification: Funding, microgrids, and sustainability. Journal of Aviation Technology and Engineering. DOI: 10.7771/2159-6670.1314 CR - Morch, A., Laveneziana, L., Erga, I., Restaldo, G., Odisio, M., & Chiaramonti, D. (2024). Electrification of airports and air transport: Airports becoming integrated energy systems. In 2024 20th International Conference on the European Energy Market (EEM) (pp. 1-6). IEEE. CR - Okereke, C., & Russel, D. (2010). Regulatory Pressure and Competitive Dynamics: Carbon Management Strategies of UK Energy-Intensive Companies. California Management Review, 52(4), 100-124. DOI: 10.1525/cmr.2010.52.4.100 CR - QSI. (2024). ACA – Airport Carbon Accreditation. Erişim adresi: https://www.qsi.com.tr/hizmetler/aca-airport-carbon/ 10.03.2025 CR - Ritchie, H. (2024). “What share of global CO₂ emissions come from aviation?” Our World in Data. https://ourworldindata.org/global-aviation-emissions UR - https://doi.org/10.35229/jaes.1689542 L1 - https://dergipark.org.tr/en/download/article-file/4829375 ER -