TY - JOUR T1 - Relaxing actions of carvacrol on isolated rat duodenum smooth muscles: Evidence for the role of potassium ion channels AU - Yusuf, Muhammed AU - Aydın, Süleyman PY - 2025 DA - July Y2 - 2024 JF - Journal of Research in Pharmacy JO - J. Res. Pharm. PB - Marmara University WT - DergiPark SN - 2630-6344 SP - 1501 EP - 1507 VL - 28 IS - 5 LA - en AB - Mammals have approximately 80 genes that encode potassium (K+) channels. They have a wide range of physiological functions, such as modulation of action potential duration and relaxation of smooth muscles. Carvacrol, a compound found in various aromatic plants, has been used traditionally for treating asthma, menstrual spasms, and gastrointestinal disorders. However, its mechanism of action on smooth muscles remains insufficiently understood. This study investigates the role of potassium ion channels in the relaxing effects of carvacrol on isolated rat duodenum smooth muscles. Rats were euthanized and duodenal segments were prepared and placed in an isolated organ bath with Krebs’ solution. The segments were equilibrated for 1 h and then treated with chemicals to obtain concentration-response curves. The data were evaluated using one-way Analysis of Variance (ANOVA) and Tukey's Honest Significant Difference (Tukey’s HSD) test for multiple comparisons. Our findings demonstrate that carvacrol induces a dose-dependent relaxation of these muscles. The relaxation effects were significantly reduced in the presence of specific potassium channel inhibitors, including paxilline, UCL1684, linopirdine, barium chloride, and 4-aminopyridine. They were completely blocked by the combination of barium chloride and tetraethylammonium. However, glibenclamide, ruthenium red, and nitroarginine did not alter the relaxing effects of carvacrol. In conclusion: carvacrol relaxes duodenum smooth muscles by opening barium chloride-sensitive Kir2.1 and Kir3.1, as well as tetraethylammonium-sensitive KCa1.1, KCa2.1, KCa2.2, KCa2.3, Kv1.2, Kv1.4, Kv1.5, Kv2.1, Kv2.2, Kv4.1, Kv4.2, Kv4.3, Kv7.1, Kv7.2, Kv7.3, Kv7.4, and Kv7.5 potassium channels. KW - Carvacrol KW - Ion channel KW - Transient receptor potential KW - Potassium KW - Duodenum KW - Smooth muscle CR - [1] Tack, J, Talley, NJ, Camilleri, M, Holtmann, G, Hu, P, Malagelada, JR. Functional gastroduodenal disorders. Gastroenterol. 2006; 130 (5): 1466-1479. https://doi.org/10.1053/j.gastro.2005.11.059 CR - [2] Lacy BE, Weiser K. Gastrointestinal motility disorders: an update. Dig Dis. 2006; 24 (3-4): 228-242. https://doi.org/10.1159/000092876 CR - [3] Andersson KE, Arner A. Urinary bladder contraction and relaxation: Physiology and pathophysiology. Physiol Rev. 2004; 84 (3): 935-986. https://doi.org/10.1152/physrev.00038.2003 CR - [4] Curro D. The modulation of potassium channels in the smooth muscle as a therapeutic strategy for disorders of the gastrointestinal tract. Adv Protein Chem Struct Biol. 2016; 104: 263-305. https://doi.org/10.1016/bs.apcsb.2015.12.002 CR - [5] Maljevic S, Lerche H. Potassium channels: A review of broadening therapeutic possibilities for neurological diseases. J Neurol. 2013; 260 (9): 2201-2211. https://doi.org/10.1007/s00415-012-6727-8 CR - [6] Vyas VK, Parikh P, Ramani J, Ghate M. Medicinal chemistry of potassium channel modulators: An update of recent progress (2011-2017). Curr Med Chem. 2019; 26 (12): 2062-2084. https://doi.org/10.2174/0929867325666180430152023 CR - [7] Beyder A, Farrugia G. Targeting ion channels for the treatment of gastrointestinal motility disorders. Therap Adv Gastroenterol. 2012; 5 (1): 5-21. https://doi.org/10.1177/1756283x11415892 CR - [8] Baser KHC. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des. 2008; 14(29): 3106-3120. https://doi.org/10.2174/138161208786404227 CR - [9] Boskabady MH, Jandaghi P. Relaxant effects of carvacrol on guinea pig tracheal chains and its possible mechanisms. Pharmazie. 2008; 58 (9): 661-663. CR - [10] Boskabady MH, Jafari Z , Pouraboli I. The effect of carvacrol on muscarinic receptors of guinea-pig tracheal chains. Phytother Res. 2011; 25 (4): 530-535. https://doi.org/10.1002/ptr.3290 CR - [11] Boskabady MH, Tabanfar H, Gholamnezhad Z, Sadeghnia HR. Inhibitory effect of Zataria multiflora Boiss and carvacrol on histamine (H (1)) receptors of guinea-pig tracheal chains. Fundam Clin Pharmacol. 2012; 26 (5): 609-620. https://doi.org/10.1111/j.1472-8206.2011.00971.x CR - [12] Boskabady MH, Kaveh M, Eftekhar N, Nemati A. Zataria multiflora Boiss and carvacrol affect β (2)-adrenoceptors of guinea pig trachea. Evid Based Complement Alternat Med. 2010; 857124. https://doi.org/10.1155%2F2011%2F857124 CR - [13] Aydin Y, Kutlay O, Ari S, Duman S, Uzuner K, Aydin S. Hypotensive effects of carvacrol on the blood pressure of normotensive rats. Planta Med. 2007; 73 (13): 1365-1371. https://doi.org/10.1055/s-2007-990236 CR - [14] Dantas BP, Alves QL, Assis KS, Ribeiro TP, Almeida MM, Vasconcelos AP, Araujo DAM, Braga VA, Medeiros IA, Alencar JL, Silva DF. Participation of the TRP channel in the cardiovascular effects induced by carvacrol in normotensive rat. Vascul Pharmacol. 2015; 67-69: 48-58. https://doi.org/10.1016/j.vph.2015.02.016 CR - [15] Peixoto-Neves D, Silva-Alves KS, Gomes MD, Lima FC, Lahlou S, Magalhaes PJ, Ceccatto VM, Coelho-de-Souza AN, Leal-Cardoso JH. Vasorelaxant effects of the monoterpenic phenol isomers, carvacrol, and thymol, on rat isolated aorta. Fundam Clin Pharmacol. 2010; 24 (3): 341-350. https://doi.org/10.1111/j.1472-8206.2009.00768.x CR - [16] Luo QT, Fujita T, Jiang CY, Kumamoto E. Carvacrol presynaptically enhances spontaneous excitatory transmission and produces outward current in adult rat spinal substantia gelatinosa neurons. Brain Res. 2014; 1592: 44-54. https://doi.org/10.1016/j.brainres.2014.10.021 CR - [17] Balci CN, Firat T, Acar N, Kukner A. Carvacrol treatment opens Kir6.2 ATP-dependent potassium channels and prevents apoptosis on rat testis following ischemia-reperfusion injury model. Rom J Morphol Embryol. 2021; 62 (1): 179-190. https://doi.org/10.47162/rjme.62.1.17 CR - [18] Komori S, Unno T, Ohash H. Pharmacological properties of non-adrenergic, non-cholinergic inhibitory transmission in chicken gizzard. Br J Pharmacol. 1997; 121 (3): 572 – 578. https://doi.org/10.1038%2Fsj.bjp.0701132 CR - [19] Oliveira IS, Silva FV, Viana AFSC. Gastroprotective activity of carvacrol on experimentally induced gastric lesions in rodents. Naunyn Schmiedebergs Arch Pharmacol. 2012; 385 (9): 899-908. https://doi.org/10.1007/s00210-012-0771-x CR - [20] Nilius B, Owsianik G. The transient receptor potential family of ion channels. Gen Biol. 2011; 12 (3): 218. https://doi.org/10.1186/gb-2011-12-3-218 CR - [21] Earley S, Heppner TJ, Nelson MT, Brayden JE. TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ Res. 2005; 97 (12): 1270-1279. https://doi.org/10.1161/01.res.0000194321.60300.d6 CR - [22] Johnson CD, Melanaphy D, Purse A, Stokes NR, Dickenson AH. TRPM8 channel as a therapeutic target. Am J Physiol Heart Circ Physiol. 2009; 296 (6): 522-532. https://doi.org/10.1152/ajpheart.01112.2008 CR - [23] Beech DJ. TRPC1: Store-operated channel and more. Pflugers Arch. 2005; 451 (1): 53-60. https://doi.org/10.1007/s00424-005-1441-3 CR - [24] Veldhuis NA, Poole D, Grace M, McIntyre P, Bunnett NW. The G protein-coupled receptor-transient receptor potential channel axis: Molecular insights for targeting disorders of sensation and inflammation. Pharmacol Rev. 2015; 67 (1): 36-73. https://doi.org/10.1124/pr.114.009555 CR - [25] Xu H, Delling M, Jun JC, Clapham DE. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci. 2006; 9(5): 628-635. https://doi.org/10.1038/nn1692 CR - [26] Saito S, Nakatsuka K, Takahashi K, Fukuta N, Imagawa T, Ohta T, Tominaga M. Analysis of transient receptor potential ankyrin 1 (TRPA1) in frogs and lizards illuminates both nociceptive heat and chemical sensitivities and coexpression with TRP vanilloid 1 (TRPV1) in ancestral vertebrates. J Biol Chem. 2012; 287 (37): 30743-30754. https://doi.org/10.1074%2Fjbc.M112.362194 CR - [27] Peters M, Trembovler V, Alexandrovich A, Parnas M, Birnbaumer L, Minke B, Shohami E. Carvacrol together with TRPC1 elimination improve functional recovery after traumatic brain injury in mice. J Neurotrauma. 2012; 29 (18): 2831-2834. https://doi.org/10.1089%2Fneu.2012.2575 CR - [28] Khalil A, Kovac G, Walker MC. Carvacrol after status epilepticus (SE) prevents recurrent SE, early seizures, cell death, and cognitive decline. Epilepsia. 2017; 58: 263-273. CR - [29] Jegla T, Salkoff L. Molecular evolution of K+ channels in primitive eukaryotes. Soc Gen Physiol Ser. 1994; 49: 213-222. CR - [30] Xin W, Li N, Cheng, Petkov GV. BK Channel-mediated relaxation of urinary bladder smooth muscle: A novel paradigm for phosphodiesterase type 4 regulation of bladder function. J Pharmacol Exp Ther. 2014; 349 (1): 56-65. https://doi.org/10.1124%2Fjpet.113.210708 CR - [31] Karpinska O, Baranowska-Kuczko M, Malinowska B, Kloza M, Kusaczuk M, Gegotek A, Golec P, Kasacka I, Kozlowska H. Mechanisms of l-alpha-lysophosphatidylinositol-induced relaxation in human pulmonary arteries. Life Sci. 2018; 192: 38-45. https://doi.org/10.1016/j.lfs.2017.11.020 CR - [32] Sakakibara K, Feng G, Li J, Akahori T, Yasuda Y, Nakamura E, Hatakeyama N, Fujiwara Y, Kinoshita H. Kynurenine causes vasodilation and hypotension induced by activation of KCNQ-encoded voltage-dependent K+ channels. J Pharmacol Sci. 2015; 129 (1): 31-37. https://doi.org/10.1016/j.jphs.2015.07.042 CR - [33] Dong D, Wang Q, Chen W, Fan J, Mu J, Ke J, Yang B. Contrasting effects of tetraethylammonium and 4-aminopyridine on the gastrointestinal function of mice. Eur J Pharmacol. 2005; 509 (2-3):179-85. https://doi.org/10.1016/j.ejphar.2005.01.013 CR - [34] Zhang H, Bolton TB. Activation by intracellular GDP, metabolic inhibition and pinacidil of a glibenclamide-sensitive K-channel in smooth muscle cells of rat mesenteric artery. Br J Pharmacol. 1995; 114 (3): 662-672. https://doi.org/10.1111/j.1476-5381.1995.tb17190.x CR - [35] Huang Y. BaCl2- and 4-aminopyridine-evoked phasic contractions in the rat vas deferens. Br J Pharmacol. 1995; 115 (5): 845-851. https://doi.org/10.1111%2Fj.1476-5381.1995.tb15010.x CR - [36] Nozawa K, Kawabata-Shoda E, Doihara H, Kojima R, Okada H, Mochizuki S, Sano Y, Inamura K, Matsushime H, Koizumi T, Yokoyama T, Ito H. TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc Natl Acad Sci USA. 2009; 106: 3408-3413. https://doi.org/10.1073/pnas.0805323106 CR - [37] Yuan SY, Brookes SJ, Costa M. Distension-evoked ascending and descending reflexes in the isolated guinea-pig stomach. J Auton Nerv Syst. 1997; 62(1-2): 94-102. https://doi.org/10.1016/s0165-1838(96)00115-4 UR - https://dergipark.org.tr/en/pub/jrespharm/issue//1689870 L1 - https://dergipark.org.tr/en/download/article-file/4830911 ER -