TY - JOUR T1 - Thymol reduces the lipopolysaccharide-induced acute kidney inflammation by modulating lysosomal stress AU - Erzurumlu, Yalçın AU - Doğan, Hatice Kübra AU - Çataklı, Deniz PY - 2025 DA - June JF - Journal of Research in Pharmacy JO - J. Res. Pharm. PB - Marmara University WT - DergiPark SN - 2630-6344 SP - 722 EP - 732 VL - 27 IS - 2 LA - en AB - Inflammation-induced overexpression of cytokines can lead to cell death by caspase-dependent orindependent signaling pathways. Numerous natural products are used to suppress/re-modulate inflammation.Phenolic monoterpene thymol is widely used in cosmetics and for medical purposes. It has been shown that thymolregulates the anti-inflammatory, antioxidant and anti-apoptotic responses in lipopolysaccharide (LPS)-induced in vitroand in vivo models. However, there is still a need to investigate the molecular mechanism of inflammation and thedetailed regulatory roles of thymol on inflammation-dependent signal mechanisms. In the present study, the possibleprotective effects of thymol on inflammation-mediated lysosomal stress in the LPS-induced acute kidney inflammationmodel were investigated on HEK293 cells. To mimic the inflammation in HEK293 cells, LPS was applied to the cells for24 h. Following, cells were treated with various doses of thymol and total protein was isolated from the cells.Inflammation-associated Interleukin-6 (IL-6), tumor necrosis factor-⍺ (TNF-⍺), nuclear factor kappa B (Nf-κB) andphospho-Nf-κB protein levels, autophagy-related Beclin-1, autophagy-related 5 (Atg5), p62/SQSTM1 and microtubule-associated protein 1A/1B-light chain 3 (LC3-I/II), ubiquitin proteosome system-associated polyubiquitin, cell death-associated caspase-3 and poly (ADP-ribose) polymerase (PARP-1) protein levels were examined by immunoblotting.We find that LPS-induced acute inflammation caused the suppressing of autophagic flux and reducing degradation ofpolyubiquitinated proteins. Thymol treatment markedly reversed the suppression of autophagy and stacking of poly-ubiquitinated protein by LPS. Also, LPS-induced acute inflammation did not cause caspase activation, it caused anincrease in lysosomal stress-related PARP-1 cleavage pattern and thymol administration efficiently reduced PARP-1cleavage. Our results suggested that LPS-induced acute inflammation triggers blockage of autophagic flux and thymolhas a protective role against LPS-induced lysosomal stress. KW - Autophagy KW - inflammation KW - lysosomal stress KW - thymol CR - Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001; 357(9255):539–45. https://doi.org/10.1016/S0140-6736(00)04046-0 CR - Aggarwal BB. Nuclear factor-kappaB: the enemy within. Cancer Cell. 2004; 6(3):203–8. https://doi.org/10.1016/j.ccr.2004.09.003 CR - Dolcet X, Llobet D, Pallares J, Matias-Guiu X. NF-kB in development and progression of human cancer. Virchows Archiv. 2005;446(5),475–82. https://doi.org/10.1007/s00428-005-1264-9 CR - Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev. 2004;18(18):2195–224. https://doi.org/10.1101/gad.1228704 CR - Fehrenbacher N, Bastholm L, Kirkegaard-Sørensen T, Rafn B, Bøttzauw T, Nielsen C, Weber E, Shirasawa S, Kallunki T, Jaattela M. Sensitization to the Lysosomal Cell Death Pathway by Oncogene-Induced Down-regulation of Lysosome-Associated Membrane Proteins 1 and 2. Cancer Research. 2008;68: 6623–33. https://doi.org/10.1158/0008-5472.CAN-08-0463 CR - Karch J, Schips TG, Maliken BD, Brody MJ, Sargent MA, Kanisicak O, Molkentin JD. Autophagic cell death is dependent on lysosomal membrane permeability through Bax and Bak. eLife. 2017;6:e30543. https://doi.org/10.7554/eLife.30543 CR - Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene. 2008;27(50): 6434–6451. https://doi.org/10.1038/onc.2008.310 CR - Wu Y, Sun Y, Dong X, Chen J, Wang Z, Chen J, Dong G. The Synergism of PGN, LTA and LPS in Inducing Transcriptome Changes, Inflammatory Responses and a Decrease in Lactation as Well as the Associated Epigenetic Mechanisms in Bovine Mammary Epithelial Cells. Toxins. 2020;12(6): 387. https://doi.org/10.3390/toxins12060387 CR - Cao X, Jin Y, Zhang H, Yu L, Bao X, Li F, Xu Y. The Anti-inflammatory Effects of 4-((5-Bromo-3-chloro-2- hydroxybenzyl) amino)-2-hydroxybenzoic Acid in Lipopolysaccharide-Activated Primary Microglial Cells. Inflammation. 2018;41(2):530–40. https://doi.org/10.1007/s10753-017-0709-z CR - Rahmani AH, Al Zohairy MA, Aly SM, Khan MA. Curcumin: a potential candidate in prevention of cancer via modulation of molecular pathways. Biomed Res Int. 2014; 2014:761608. https://doi.org/10.1155/2014/761608 CR - Akbar S. Thymus vulgaris L. (Lamiaceae) Handbook of 200 Medicinal Plants. 2020, p. 1795–810. http://doi.org/10.1007/978-3-030-16807-0_185 CR - Basch E, Ulbricht C, Hammerness P, Bevins A, Sollars D. Thyme (Thymus vulgaris L.), Thymol. Vol. 4, Journal of Herbal Pharmacotherapy. 2004;4(1):49-67. https://doi.org/10.1080/J157v04n01_07 CR - Marchese A, Orhan IE, Daglia M, Barbieri R, Di Lorenzo A, Nabavi SF, Gortzi O, Izadi M, Nabavi SM. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016; 210:402–14. https://doi.org/10.1016/j.foodchem.2016.04.111 CR - Rustaiyan A, Masoudi S, Monfared A, Kamalinejad M, Lajevardi T, Sedaghat S, Yari M. Volatile constituents of three Thymus species grown wild in Iran. Planta Med. 2000;66(2):197–8. https://doi.org/10.1055/s-0029-1243136 CR - Soliman KM, Badeaa RI. Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food Chem Toxicol. 2002;40(11):1669–75. https://doi.org/10.1016/s0278-6915(02)00120-5 CR - Lee SP, Buber MT, Yang Q, Cerne R, Cortés RY, Sprous DG, Bryant RW. Thymol and related alkyl phenols activate the hTRPA1 channel. Br J Pharmacol. 2008;153(8):1739–49. https://doi.org/10.1038/bjp.2008.85 CR - Yang J, Hooper WC, Phillips DJ, Talkington DF. Interleukin-1beta responses to Mycoplasma pneumoniae infection are cell-type specific. Microb Pathog. 2003;34(1):17–25. https://doi.org/10.1016/S0882-4010(02)00190-0 CR - Yao L, Hou G, Wang L, Zuo XS, Liu Z. Protective effects of thymol on LPS-induced acute lung injury in mice. Microbial Pathogenesis. 2018;116: 8–12. https://doi.org/10.1016/j.micpath.2017.12.065 CR - El-Sayed EM, Abd-Allah AR, Mansour AM, El-Arabey AA. Thymol and carvacrol prevent cisplatin-induced nephrotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in rats. J Biochem Mol Toxicol. 2015;29(4):165–72. https://doi.org/10.1002/jbt.21681 CR - Elbe H, Yigitturk G, Cavusoglu T, Uyanikgil Y, Ozturk F. Apoptotic effects of thymol, a novel monoterpene phenol, on different types of cancer. Bratisl Lek Listy. 2020;121(2):122–8. https://doi.org/10.4149/BLL_2020_016 CR - Yücel G, Zhao Z, El-Battrawy I, Lan H, Lang S, Li X, Buljubasic F, Zimmermann WH, Cyganek L, Utikal J, Ravens U, Wieland T, Borggrefe M, Zhou XB, Akin I. Lipopolysaccharides induced inflammatory responses and electrophysiological dysfunctions in human-induced pluripotent stem cell derived cardiomyocytes. Sci Rep. 2017;7(1):1–13. https://doi.org/10.1038/s41598-017-03147-4 CR - Tucureanu MM, Rebleanu D, Constantinescu CA, Deleanu M, Voicu G, Butoi E, Calin M, Manduteanu I. Lipopolysaccharide-induced inflammation in monocytes/macrophages is blocked by liposomal delivery of G- protein inhibitor. Int J Nanomedicine. 2018; 13:63–76. https://doi.org/10.2147/IJN.S150918 CR - Liu X, Yin S, Chen Y, Wu Y, Zheng W, Dong H, Bai Y, Qin Y, Li J, Feng S, Zhao P. LPS‑induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF‑κB, STAT3 or AP‑1 activation. Mol Med Rep. 2018;17(4):5484–91. https://doi.org/10.3892/mmr.2018.8542 CR - Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. https://doi.org/10.1038/sigtrans.2017.23 CR - Klionsky DJ, Emr SD. Autophagy as a Regulated Pathway of Cellular Degradation. Science.2000;290(5497):1717-1721. http://doi.org/10.1126/science.290.5497.1717 CR - Nandi D, Tahiliani P, Kumar A, Chandu D. The ubiquitin-proteasome system. J Biosci. 2006;31(1):137–55. https://doi.org/10.1007/BF02705243 CR - Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC. Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell. 2009;33(4):517–27. https://doi.org/10.1016/j.molcel.2009.01.021 CR - Pohl C, Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 2019;366(6467):818–822. http://doi.org/10.1126/science.aax3769 CR - Wang XJ, Yu J, Wong SH, Cheng ASL, Chan FKL, Ng SSM, Cho CH, Sung JJY, Wu WKK. A novel crosstalk between two major protein degradation systems: regulation of proteasomal activity by autophagy. Autophagy. 2013;9(10):1500–8. https://doi.org/10.4161/auto.25573 CR - Liu WJ, Ye L, Huang WF, Guo LJ, Xu ZG, Wu HL, Yang C, Liu HF. p62 links the autophagy pathway and the ubiqutin- proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett. 2016; 21:29. https://doi.org/10.1186/s11658-016-0031-z CR - Nicoletti VG, Stella AMG. Role of PARP Under Stress Conditions: Cell Death or Protection?. Neurochemical Research. 2003;28(2):187–94. http://doi.org/10.1023/a:1022316914492 CR - Fernandes-Alnemri T, Litwack G, Alnemri ES. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem. 1994; 269(49):30761–4. https://doi.org/10.1016/s0021-9258(18)47344-9 CR - Maiden MJ, Otto S, Brealey JK, Finnis ME, Chapman MJ, Kuchel TR, Nash CH, Edwards J, Bellomo R. Structure and Function of the Kidney in Septic Shock. A Prospective Controlled Experimental Study. Am J Respir Crit Care Med. 2016;194(6):692–700. https://doi.org/10.1164/rccm.201511-2285OC CR - Wang Z, Holthoff JH, Seely KA, Pathak E, Spencer HJ 3rd, Gokden N, Mayeux PR. Development of oxidative stress in the peritubular capillary microenvironment mediates sepsis-induced renal microcirculatory failure and acute kidney injury. Am J Pathol. 2012;180(2):505–16. https://doi.org/10.1016/j.ajpath.2011.10.011 CR - Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. 2019;394(10212):1949–64. https://doi.org/10.1016/S0140-6736(19)32563-2 CR - Kliger AS, Foley RN, Goldfarb DS, Goldstein SL, Johansen K, Singh A, Szczech L. KDOQI US commentary on the 2012 KDIGO Clinical Practice Guideline for Anemia in CKD. Am J Kidney Dis. 2013;62(5):849–59. https://doi.org/10.1053/j.ajkd.2013.06.008 CR - Hoste EAJ. Epidemiology of Acute Kidney Injury in Critically Ill Patients. In Critical Care Nephrology. 2019, p. 81– 85. https://doi.org/10.1016/B978-0-323-44942-7.00013-3 CR - Chauhan AK, Jakhar R, Paul S, Kang SC. Potentiation of macrophage activity by thymol through augmenting phagocytosis. Int Immunopharmacol. 2014;18(2):340–6. https://doi.org/10.1016/j.intimp.2013.11.025 CR - Negishi H, Fujita Y, Yanai H, Sakaguchi S, Ouyang X, Shinohara M, Takayanagi H, Ohba Y, Taniguchi T, Honda K. Evidence for licensing of IFN-gamma-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program. Proc Natl Acad Sci U S A. 2006; 103(41):15136–41. https://doi.org/10.1073/pnas.0607181103 CR - Sharif O, Bolshakov VN, Raines S, Newham P, Perkins ND. Transcriptional profiling of the LPS induced NF-kappaB response in macrophages. BMC Immunol. 2007; 8:1. https://doi.org/10.1186/1471-2172-8-1 CR - Akira S, Hirano T, Taga T, Kishimoto T. Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF). The FASEB Journal. 1990;4: 2860–2867. https://doi.org/10.1096/fasebj.4.11.2199284 CR - Hochrainer K, Racchumi G, Anrather J. Site-specific phosphorylation of the p65 protein subunit mediates selective gene expression by differential NF-κB and RNA polymerase II promoter recruitment. J Biol Chem. 2013;288(1):285– 93. https://doi.org/10.1074/jbc.M112.385625 CR - Anrather J, Racchumi G, Iadecola C. cis-acting, element-specific transcriptional activity of differentially phosphorylated nuclear factor-kappa B. J Biol Chem. 2005;280(1):244–52. https://doi.org/10.1074/jbc.M409344200 CR - Wu H, Jiang K, Yin N, Ma X, Zhao G, Qiu C, Deng G. Thymol mitigates lipopolysaccharide-induced endometritis by regulating the TLR4- and ROS-mediated NF-κB signaling pathways. Oncotarget. 2017;8(12):20042–55. https://doi.org/10.18632/oncotarget.15373 CR - Qian M, Fang X, Wang X. Autophagy and inflammation. Clinical and Translational Medicine. 2017;6(1):1-11. http://doi.org/10.1186/s40169-017-0154-5 CR - Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol. 2013;13(10):722–37. https://doi.org/10.1038/nri3532 CR - Ding WX, Ni HM, Gao W, Yoshimori T, Stolz DB, Ron D, Yin XM. Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol. 2007;171(2):513– 24. https://doi.org/10.2353/ajpath.2007.070188 CR - Chaitanya GV, Alexander JS, Babu PP. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal. 2010; 8:31. https://doi.org/10.1186/1478-811X-8-31 CR - Artal-Sanz M, Samara C, Syntichaki P, Tavernarakis N. Lysosomal biogenesis and function is critical for necrotic cell death in Caenorhabditis elegans. J Cell Biol. 2006; 173(2):231–9. https://doi.org/10.1083/jcb.200511103 CR - IIvanova S, Repnik U, Boji L, Petelin A, Turk V, Turk B. Lysosomes in apoptosis. Methods Enzymol. 2008;442:183-99. https://doi.org/10.1016/S0076-6879(08)01409-2 CR - Pacheco FJ, Servin J, Dang D, Kim J, Molinaro C, Daniels T, Brown-Bryan TA, Imoto-Egami M, Casiano CA. Involvement of lysosomal cathepsins in the cleavage of DNA topoisomerase I during necrotic cell death. Arthritis Rheum. 2005; 52(7):2133–45. https://doi.org/10.1002/art.21147 CR - He C, Klionsky DJ. Regulation Mechanisms and Signaling Pathways of Autophagy. Annual Review of Genetics. 2009; 43: 67–93. http://doi.org/10.1146/annurev-genet-102808-114910 CR - Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, Han F, Fukunaga K, Qin ZH. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy. 2008;4(6):762–9. https://doi.org/10.4161/auto.6412 CR - Gobeil S, Boucher CC, Nadeau D, Poirier GG. Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases. Cell Death Differ. 2001;8(6):588–94. https://doi.org/10.1038/sj.cdd.4400851 UR - https://dergipark.org.tr/en/pub/jrespharm/issue//1691027 L1 - https://dergipark.org.tr/en/download/article-file/4835210 ER -