TY - JOUR T1 - Existence of Solutions for a Class of Nonlinear Boundary Value Problems with Caputo Fractional Derivatives AU - Tabti, Hamza AU - Jarad, Fahd PY - 2025 DA - September Y2 - 2025 DO - 10.32323/ujma.1691155 JF - Universal Journal of Mathematics and Applications JO - Univ. J. Math. Appl. PB - Emrah Evren KARA WT - DergiPark SN - 2619-9653 SP - 158 EP - 166 VL - 8 IS - 3 LA - en AB - Our aim in this paper is to explore the existence of nonnegative solutions for a boundary value problem involving nonlinear Caputo fractional differential equations. The analysis begins with the formulation of superlinear and sublinear conditions, under which the Guo-Krasnosel'skii fixed point theorem is applied in a cone to get the existence of positive solutions. To facilitate this, the corresponding Green's function is constructed, and its essential properties are explored. A number of illustrative examples are included to show the applicability of the theoretical results and emphasize their effectiveness. KW - Caputo KW - Existence KW - Fixed point theorem KW - Fractional differential equation KW - Green KW - Sublinear condition KW - Superlinear condition CR - [1] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, World Scientific Publishing, Singapore, 2012. https://doi.org/10.1142/9789814355216 CR - [2] H. A. Fallahgoul, S. M. Focardi, F. J. Fabozzi, Fractional Calculus and Fractional Processes with Applications to Financial Economics: Theory and Application, Elsevier Academic Press, London, 2017. CR - [3] R. L. Magin, Fractional Calculus in Bioengineering, Begell House Publishers, Connecticut, 2006. CR - [4] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, 2010. https://doi.org/10.1142/9781848163300 CR - [5] J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007. https://doi.org/10.1007/978-1-4020-6042-7 CR - [6] L. Sadek, A. Algefary, On quantum trigonometric fractional calculus, Alexandria Eng. J., 120 (2025), 371–377. https://doi.org/10.1016/j.aej.2025.02.005 CR - [7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006. https://doi.org/10.1016/S0304-0208(06)80001-0 CR - [8] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, 1993. CR - [9] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, Vol. 198, Academic Press, San Diego, 1999. CR - [10] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993. CR - [11] C. Bai, Triple positive solutions for a boundary value problem of nonlinear fractional differential equation, Electron. J. Qual. Theory Differ. Equ., 24 (2008), 1–10. http://eudml.org/doc/231470 CR - [12] Z. Bai, W. Ge, Existence of three positive solutions for some second-order boundary value problems, Comput. Math. Appl., 48(5-6) (2004), 699–707. https://doi.org/10.1016/j.camwa.2004.03.002 CR - [13] Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311(2) (2005), 495–505. https://doi.org/10.1016/j.jmaa.2005.02.052 CR - [14] P. Borisut, T. Bantaojai, The solution existence of integral boundary value problem involving nonlinear implicit Caputo fractional differential equations in Banach spaces, Bangmod Int. J. Math. Comput. Sci., 7 (2021), 92–101. https://bangmodjmcs.com/index.php/bangmodmcs/article/view/29 CR - [15] A. Seemab, M. Ur Rehman, J. Alzabut, A. Hamdi, On the existence of positive solutions for generalized fractional boundary value problems, Bound. Value Probl., 2019 (2019), Article ID 186. https://doi.org/10.1186/s13661-019-01300-8 CR - [16] H. Tabti, M. Belmekki, Multiple positive solutions for fractional boundary value problems with integral boundary conditions, Memo. Differ. Equ. Math. Phys., 91 (2024), 161–173. https://rmi.tsu.ge/memoirs/vol91/vol91-10.pdf CR - [17] H. Tabti, M. Nehari, Existence of extremal solutions for mixed nonlinear fractional differential equations with p-Laplacian, Gulf J. Math., 20(2) (2025), 474–488. https://doi.org/10.56947/gjom.v20i2.3262 CR - [18] K. Venkatachalam, S. K. Marappan, Results on impulsive $\Psi$-Caputo fractional integro-differential equations with boundary conditions, Bangmod Int. J. Math. Comput. Sci., 10 (2024), 63–73. https://doi.org/10.58715/bangmodjmcs.2024.10.5 CR - [19] L. Yang, C. Shen, D. Xie, Multiple positive solutions for nonlinear boundary value problem of fractional order differential equation with the Riemann-Liouville derivative, Adv. Difference Equ., 2014 (2014), Article ID 284. https://doi.org/10.1186/1687-1847-2014-284 CR - [20] X. Zhang, Q. Zhong, Multiple positive solutions for nonlocal boundary value problems of singular fractional differential equations, Bound. Value Probl., 2016(2016), Article ID 65. https://doi.org/10.1186/s13661-016-0572-0 CR - [21] D. Zhao, Y. Liu, Multiple positive solutions for nonlinear fractional boundary value problems, Sci. World J., 2013(1) (2013), Article ID 473828. http://dx.doi.org/10.1155/2013/473828 CR - [22] D. J. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Boston, 1988. CR - [23] H. Wang, On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl., 281(1) (2003), 287–306. https://doi.org/10.1016/S0022-247X(03)00100-8 CR - [24] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. https://doi.org/10.1007/978-3-662-00547-7 UR - https://doi.org/10.32323/ujma.1691155 L1 - https://dergipark.org.tr/en/download/article-file/4835750 ER -