TY - JOUR T1 - Kaotik Tabanlı Geliştirilen PSO Algoritması ile PID Kontrol Parametrelerinin Optimizasyonu ve Sistem Performansının İncelenmesi TT - Optimization of PID Control Parameters Using a Chaotic-Based Developed PSO Algorithm and Analysis of System Performance AU - Sarıkaya, Muhammed Salih AU - Demirel, Onur AU - Kaçar, Sezgin AU - Derdiyok, Adnan PY - 2025 DA - June Y2 - 2025 DO - 10.58769/joinssr.1692401 JF - Journal of Smart Systems Research JO - JoinSSR PB - Sakarya University of Applied Sciences WT - DergiPark SN - 2757-6787 SP - 45 EP - 61 VL - 6 IS - 1 LA - tr AB - Bu çalışma, optimizasyon algoritmalarının kaotik sistemlerle hibritlenerek kontrolcü tasarımı üzerindeki performanslarının iyileştirilmesi amaçlanmaktadır. Kontrol parametrelerinin optimum şekilde ayarlanması metodolojik yöntemlerle (Ziegler-Nichols, Adaptif vb) veya çoğunlukla uzman bilgisine dayalı deneme-yanılma yaklaşımlarla gerçekleştirilmektedir. Daha etkin çözümler sunabilmeleri açısından meta-sezgisel optimizasyon algoritmalarının kullanımı son yıllarda ön plana çıkmaktadır. Bu çalışma kapsamında, Parçacık Sürü Optimizasyonu ve bu algoritmanın kaotik sistemlerle entegre edilmiş versiyonu olan Kaotik Parçacık Sürü Optimizasyonu kullanılarak PID kontrolcünün parametreleri optimize edilmiştir. Optimizasyon sürecinde performans kriteri olarak Zaman Ağırlıklı Hatanın Karesinin İntegrali esas alınmıştır. Elde edilen bulgular, kaotik sistemlerin Parçacık Sürü Optimizasyon algoritmasına entegrasyonu, algoritmanın minimum değere yakınsama başarımını artırdığını ortaya koymuştur. Bu çalışma kaotik yapılarla hibritlenen optimizasyon algoritmalarının kontrol sistemlerinde başarılı bir şekilde uygulanabileceğini göstermiştir. KW - DC motor kontrol KW - Kaotik sistemler KW - Kaotik tabanlı optimizasyon KW - Parçacık sürü optimizasyon N2 - This study aims to improve the performance of optimization algorithms in controller design by hybridizing them with chaotic systems. The optimal tuning of control parameters is typically carried out using methodological approaches (such as Ziegler-Nichols, adaptive methods, etc.) or trial-and-error strategies that often rely on expert knowledge. In recent years, the use of metaheuristic optimization algorithms has gained prominence due to their ability to offer more effective solutions. Within the scope of this study, the parameters of the PID controller were optimized using the Particle Swarm Optimization algorithm and its version integrated with chaotic systems, known as the Chaotic Particle Swarm Optimization. The performance criterion employed in the optimization process was the Integral of Time-weighted Squared Error. The results demonstrated that the integration of chaotic systems into the Particle Swarm Optimization algorithm enhances its ability to converge toward the minimum value. This study has shown that optimization algorithms hybridized with chaotic structures can be successfully applied in control systems. CR - [1] Zhong, F. (2023). Dynamic parameter identification based on improved particle swarm optimization and comprehensive excitation trajectory for 6R robotic arm. Industrial Robot: The International Journal of Robotics Research and Application, 51(1), 148–166. https://doi.org/10.1108/ir-07-2023-0157 CR - [2] Abedinifar, M., Ertuğrul, Ş., & Arguz, S. (2022). Nonlinear model identification and statistical verification using experimental data with a case study of the UR5 manipulator joint parameters. Robotica, 41(4), 1348–1370. https://doi.org/10.1017/s0263574722001783 CR - [3] Cosar, M. (2023). Path planning via swarm intelligence algorithms in unmanned aerial vehicle population. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 26, 439–450. https://doi.org/10.55549/epstem.1411059 CR - [4] Wang, D., Liu, L., Ben, Y., Dai, P., & Wang, J. (2023). Seabed terrain-aided navigation algorithm based on combining artificial bee colony and particle swarm optimization. Applied Sciences, 13(2), 1166. https://doi.org/10.3390/app13021166 CR - [5] Wen, S., Liu, P., Wang, D., & Cao, F. (2014). Optimal tracking control for a Peltier refrigeration system based on PSO. In Proceedings of the 2014 International Conference on Advanced Mechatronic Systems (pp. 567–571). https://doi.org/10.1109/icamechs.2014.6911610 CR - [6] Tahtawi, A., Putri, F., & Martin, M. (2023). Position control of AX-12 servo motor using proportional-integral-derivative controller with particle swarm optimization for robotic manipulator application. IAES International Journal of Robotics and Automation (IJRA), 12(2), 184–191. https://doi.org/10.11591/ijra.v12i2.pp184-191 CR - [7] Yu, Y., Xu, Y., Wang, F., Li, W., Mai, X., & Wu, H. (2020). Adsorption control of a pipeline robot based on improved PSO algorithm. Complex & Intelligent Systems, 7(4), 1797–1803. https://doi.org/10.1007/s40747-020-00190-z CR - [8] Anshory, I., Hadidjaja, D., & Sulistiyowati, I. (2021). Measurement, modeling, and optimization speed control of BLDC motor using fuzzy-PSO based algorithm. Journal of Electrical Technology UMY, 5(1), 17–25. https://doi.org/10.18196/jet.v5i1.12113 CR - [9] Moghaddas, M., Dastranj, M., Changizi, N., & Rouhani, M. (2010). PID control of DC motor using particle swarm optimization (PSO) algorithm. Journal of Mathematics and Computer Science, 1(4), 386–391. https://doi.org/10.22436/jmcs.001.04.16 CR - [10] Zhu, X., Li, S., Cheng, H., & Fan, Z. (2022). Application of particle swarm optimization algorithm in photovoltaic constant pressure water supply electrical control system. Journal of Physics: Conference Series, 2203(1), 012061. https://doi.org/10.1088/1742-6596/2203/1/012061 CR - [11] Li, Q., & Ma, Z. (2021). A hybrid dynamic probability mutation particle swarm optimization for engineering structure design. Mobile Information Systems, 2021, 1–32. https://doi.org/10.1155/2021/6648650 CR - [12] Dong, Z. (2023). Crop disease and pest identification technology based on ACPSO-SVM algorithm optimization. Engenharia Agrícola, 43(5). https://doi.org/10.1590/1809-4430-eng.agric.v43n5e20230104/2023 CR - [13] Huang, J., Yang, J., Xie, D., & Wu, D. (2019). Optimal sliding mode chaos control of direct-drive wave power converter. IEEE Access, 7, 90922–90930. https://doi.org/10.1109/access.2019.2925470 CR - [14] Cheng, S. (2024). Synchronous control of high-speed train lift wing angle of attack drive system based on chaotic particle swarm optimization and linear auto-disturbance resistant controller. Electronics, 13(8), 1448. https://doi.org/10.3390/electronics13081448 CR - [15] Yue, Y., Cao, L., Hu, J., Cai, S., Hang, B., & Wu, H. (2019). A novel hybrid location algorithm based on chaotic particle swarm optimization for mobile position estimation. IEEE Access, 7, 58541–58552. https://doi.org/10.1109/access.2019.2914924 CR - [16] Jin, M. (2024). Method for the trajectory tracking control of unmanned ground vehicles based on chaotic particle swarm optimization and model predictive control. Symmetry, 16(6), 708. https://doi.org/10.3390/sym16060708 CR - [17] Huang, C., Naghdy, F., & Du, H. (2019). Fault tolerant sliding mode predictive control for uncertain steer-by-wire system. IEEE Transactions on Cybernetics, 49(1), 261–272. https://doi.org/10.1109/tcyb.2017.2771497 CR - [18] Chu, H., Yi, J., & Yang, F. (2022). Chaos particle swarm optimization enhancement algorithm for UAV safe path planning. Applied Sciences, 12(18), 8977. https://doi.org/10.3390/app12188977 CR - [19] Abdullah, H. (2021). An improvement in LQR controller design based on modified chaotic particle swarm optimization and model order reduction. International Journal of Intelligent Engineering and Systems, 14(1), 157–168. https://doi.org/10.22266/ijies2021.0228.16 CR - [20] Zhu, H. (2024). Optimizing active disturbance rejection control for a stubble breaking and obstacle avoiding control system. Agriculture, 14(5), 786. https://doi.org/10.3390/agriculture14050786 CR - [21] Mijbas, A., Hasan, B., & Salah, H. (2020). Optimal stabilizer PID parameters tuned by chaotic particle swarm optimization for damping low frequency oscillations (LFO) for single machine infinite bus system (SMIB). Journal of Electrical Engineering and Technology, 15(4), 1577–1584. https://doi.org/10.1007/s42835-020-00442-5 CR - [22] Sarıkaya, M. S., Hamida El Naser, Y., Kaçar, S., Yazıcı, İ., & Derdiyok, A. (2024). Chaotic-based improved Henry gas solubility optimization algorithm: Application to electric motor control. Symmetry, 16(11), 1435. https://doi.org/10.3390/sym16111435 CR - [23] Awrejcewicz, J., & Mrozowski, J. (1989). Bifurcations and chaos of a particular van der Pol-Duffing oscillator. Journal of Sound and Vibration, 132(1), 89–100. https://doi.org/10.1016/0022-460X(89)90873-0 CR - [24] Sarıkaya, M. S., Demirel, O., Kaçar, S., & Derdiyok, A. (2025). Modelling and chaotic based parameter optimization of sliding mode controller. Journal of Mathematical Sciences and Modelling, 8(2), 42–55. https://doi.org/10.33187/jmsm.1617412 UR - https://doi.org/10.58769/joinssr.1692401 L1 - https://dergipark.org.tr/en/download/article-file/4840504 ER -