TY - JOUR T1 - Physiological sex differences in response to exercise AU - Mwebaze, Nicholas AU - Makubuya, Timothy AU - Kamwebaze, Mark AU - Mwase, Matia AU - Ojara, Ricky Richard AU - Opio, Paul AU - Lumbuye, Linika AU - Nahwera, Loyce PY - 2025 DA - August Y2 - 2025 DO - 10.31459/turkjkin.1692902 JF - Turkish Journal of Kinesiology JO - Turk J Kinesiol PB - Nurtekin ERKMEN WT - DergiPark SN - 2459-0134 SP - 241 EP - 249 VL - 11 IS - 4 LA - en AB - Physiological sex differences influence how males and females respond to exercise due to variations in hormonal profiles, muscle mass distribution, cardiovascular capacity, and training load tolerance. Males typically have 10–15% greater hemoglobin concentrations and higher maximal oxygen uptake of (VO₂max) relative to body weight, enhancing aerobic performance, while females generally possess higher body fat percentage, lower absolute muscle mass, and greater reliance on lipid metabolism during submaximal exercise. Estrogen supports membrane stability, antioxidant defense, and fat oxidation, whereas testosterone drives hypertrophy, strength gains, and red blood cell production. Hormonal fluctuations across the menstrual cycle alter performance, with the follicular phase favoring endurance and the luteal phase potentially increasing fatigue. Females often experience greater GI discomfort but lower sweat rates than males, who lose more body fluid and require more aggressive hydration strategies. Males show greater creatine kinase and myoglobin responses, reflecting more structural muscle damage and delayed on set of muscle soreness severity, while females benefit from faster recovery via estrogen-mediated protection. Training load thresholds also differ: males tolerate higher absolute external loads but risk overtraining without sufficient recovery; females may face higher relative internal loads and greater susceptibility to endocrine disruption such as relative energy deficiency in sport. Tailoring exercise programming to these sex-specific cardiovascular, metabolic, hormonal, thermoregulatory, inflammatory, and recovery profiles can optimize performance, minimize injury risk, and improve long-term adaptation. KW - Exercise KW - hormonal fluctuations KW - menstrual cycle KW - recovery KW - response to exercise KW - sex differences CR - Baker, L. B. (2017). Sweating rate and sweat sodium concentration in athletes: A review of methodology and intra/interindividual variability. Sports Med, 47(1), 111–128. doi: 10.1007/s40279-017-0691-5. CR - Bär, P. R., Amelink, G. J., Oldenburg, B., & Blankenstein, M. A. (1988). Prevention of exercise-induced muscle membrane damage by oestradiol. Life Sci, 42(26), 2677–2681. doi: 10.1016/0024-3205(88)90243-3. CR - Bassett, D. R., & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc, 32(1), 70–84. doi: 10.1097/00005768-200001000-00012 CR - Cano, A., Ventura, L., Martinez, G., Cugusi, L., Caria, M., Deriu, F., & Manca, A. (2022). Analysis of sex-based differences in energy substrate utilization during moderate-intensity aerobic exercise. Eur J Appl Physiol, 122(1), 29–70. doi: 10.1007/s00421-021-04802-5 CR - Clarkson, P. M., & Hubal, M. J. (2002). Exercise-induced muscle damage in humans. Am J Phys Med Rehabil, 81(11 Suppl), S52–S69. doi: 10.1097/00002060-200211001-00007 CR - Crewther, B. T., Keogh, J. W. L., & Cronin, J. B. (2017). The effect of sex on strength training adaptations: A meta-analysis of strength training studies. J Strength Cond Res, 31(4), 1056-1064. doi: 10.1519/JSC.0000000000001412 CR - Dumortier, M., Lemoine, F., & Gueneau, J. M. (2009). Gender differences in strength training response: Insights into physiological and hormonal mechanisms. J Sports Sci Med, 8(2), 120-130. CR - Figueroa, A., Echeverría, V., & Álvarez, R. (2006). Sex differences in cardiovascular responses to exercise: The role of estrogen. J Sports Sci Med, 5(3), 312-320. CR - Fleck, S. J. & Kraemer, W. J. (2014). Designing resistance training programs. 4th Edition. Human Kinetics, Champaign, IL. CR - Fridén, C., Hirschberg, A. L., & Saartok, T. (2003). Muscle strength and endurance do not significantly vary across 3 phases of the menstrual cycle in moderately active premenopausal women. Clin J Sport Med, 13(4). doi: 10.1097/00042752-200307000-00007 CR - Fry A. C. (2004). The role of resistance exercise intensity on muscle fibre adaptations. Sports Med, 34(10), 663–679. doi: 10.2165/00007256-200434100-00004 CR - Gagnon, D., & Kenny, G. P. (2012). Sex differences in thermoeffector responses during exercise at fixed requirements for heat loss. J Appl Physiol, 113(5), 746–757. doi: 10.1152/japplphysiol.00637.2012 CR - Gandevia, S. C., Hunter, S. K., & Butler, J. E. (2008). Neural influences on motor performance and muscle fatigue. Curr Opin Neurol, 21(6), 719-725. CR - Hackney, A. C. (2020). Sex differences in exercise endocrinology: Implications for training. Eur J Sport Sci, 20(6), 763–772. doi: 10.1080/17461391.2019.1645884 CR - Hakkinen, K., Pakarinen, A., Alen, M., & Kraemer, W. J. (1998). Neuromuscular and hormonal responses to heavy resistance and explosive strength training in men and women. Int J Sports Med, 19(3), 235-243. doi: 10.1055/s-2007-971607 CR - Harte, S. E., & Braithwaite, E. C. (2014). Impact of menstrual cycle phase on exercise performance and the efficacy of exercise interventions. Clin J Sport Med, 24(6), 495-501. doi: 10.1097/JSM.0000000000000103 CR - Horton, T. J., Pagliassotti, M. J., Hobbs, K., & Hill, J. O. (1998). Fuel metabolism in men and women during and after long-duration exercise. J Appl Physiol, 85(5), 1823–1832. doi: 10.1152/jappl.1998.85.5.1823 CR - Hunter, S. K. (2014). Sex differences in human fatigability: Mechanisms and insight into physiological responses. Acta Physiol (Oxf), 210(4), 768–789. doi: 10.1111/apha.12234 CR - Hunter, S. K., Butler, J. L., & Keith, S. W. (2004). Sex differences in muscle fatigue and recovery following exercise. Exercise and Sport Sciences Reviews, 32(3), 134-140. doi: 10.1097/00003677-200407000-00002 CR - Joyner M. J. (2017). Physiological limits to endurance exercise performance: influence of sex. J Physiol, 595(9), 2949–2954. doi: 10.1113/JP272268 CR - Kassi, E., Kaltsas, G., & Chrousos, G. (2011). Sex differences in the effects of physical activity on health: From physiology to prevention of chronic diseases. Ann N Y Acad Sci, 1229(1), 156-167. CR - Keogh, J. W. L., & Kilding, A. E. (2014). The effects of menstrual cycle phase on exercise performance: A review of the literature. J Strength Cond Res, 28(6), 1562-1572. doi: 10.1519/JSC.0000000000000439 CR - Kredlow, M. A., & Schwartz, J. E. (2020). The effects of menstrual cycle phase on exercise performance and its implications for training programs. Sports Med, 50(5), 939-951. doi: 10.1007/s40279-020-01319-0 CR - Maddalozzo, G. F., Ross, D. A., & Thompson, A. S. (2014). Estrogen receptor signaling and muscle injury repair. J Appl Physiol, 116(4), 425-432. doi: 10.1152/japplphysiol.00550.2013 CR - Maher, A. C., Akhtar, M., Veldhuizen, M. G., & Tarnopolsky, M. A. (2018). Sex differences in global mRNA expression in human skeletal muscle. PLoS One, 13(3), e0193885. doi: 10.1371/journal.pone.0193885 CR - Martínez-Gómez, D., Mota, J., & García-Hermoso, A. (2019). Exercise during menstruation: A review of its impact on female performance and recovery. J Phys Act Health, 16(5), 417-424. doi: 10.1123/jpah.2018-0134 CR - McCullough, D. J., & Schexnayder, I. C. (2019). The influence of estrogen on muscle recovery after exercise: Implications for training and injury prevention in women. Clin J Sport Med, 29(6), 401-407. doi: 10.1097/JSM.0000000000000697 CR - Meeusen, R., Duclos, M., Foster, C., Fry, A., Gleeson, M., Nieman, D., Raglin, J., Rietjens, G., Steinacker, J., & Urhausen, A. (2013). Prevention, diagnosis, and treatment of the overtraining syndrome: Joint consensus statement. European Journal of Sport Science, 13(1), 1–24. doi: 10.1080/17461391.2012.730061 CR - Miller, M. G., Berry, D. C., & Hannon, J. P. (2015). Gender differences in the metabolic response to exercise. Med Sci Sports Exerc, 47(2), 256-264. doi: 10.1249/MSS.0000000000000402 CR - Moreau, K. L., Stauffer, B. L., Kohrt, W. M., & Seals, D. R. (2013). Essential role of estrogen for improvements in vascular endothelial function with endurance exercise in postmenopausal women. J Clin Endocrinol Metab, 98(11), 4507–4515. doi: 10.1210/jc.2013-2183 CR - Mündel, T., & Riek, F. (2015). Menstrual cycle phase and performance in physical activity. J Appl Physiol, 118(5), 604-612. doi: 10.1152/japplphysiol.00947.2014 CR - Myer, G. D., Ford, K. R., & Hewett, T. E. (2014). The influence of sex on the incidence and risk of knee injuries in sport: A review of the literature. J Strength Cond Res, 28(2), 313-319. doi: 10.1519/JSC.0b013e3182911359 CR - Rabinovitch, R. M., McCarthy, E. P., & Bennett, M. D. (2018). The effects of menstrual cycle phase on exercise performance: A review. J Strength Cond Res, 32(1), 66-76. doi: 10.1519/JSC.0000000000001502 CR - Ravussin, E., Lillioja, S., Anderson, T. E., Christin, L., & Bogardus, C. (1986). Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber. J Clin Invest, 78(6), 1568–1578. doi: 10.1172/JCI112749 CR - Rogers, R. E., Wideman, L., & McKenzie, M. (2017). Estrogen and exercise-induced fat oxidation: Exploring sex differences in metabolic responses. Sports Med, 47(7), 1423-1431. doi: 10.1007/s40279-017-0703-9 CR - Sahin, N., & Gökbel, H. (2015). Effects of menstrual cycle phases on exercise performance: Implications for athletic women. J Sports Sci Med, 14(4), 101-109. CR - Santisteban, K.J., Lovering, A.T., Halliwill, J.R., Minson, C.T. (2022). Sex Differences in VO2max and the Impact on Endurance Exercise Performance. Int J Environ Res Public Health, 19(9), 4946. doi: 10.3390/ijerph19094946. CR - Sparling, P. B. (1980). A meta‐analysis of studies comparing maximal oxygen uptake in men and women. Res Q Exercise Sport, 51(3), 542–552. doi: 10.1080/02701367.1980.10609300 CR - Starkie, R. L., Hargreaves, M., Lambert, D. L., Proietto, J., & Febbraio, M. A. (2005). Effect of temperature and exercise on endurance performance in the heat. J Appl Physiol, 99(2), 583–590. doi: 10.1152/japplphysiol.00119.2005 CR - Stupka, N., Lowther, S., Chorneyko, K., Bourgeois, J. M., Hogben, C., & Tarnopolsky, M. A. (2000). Gender differences in muscle inflammation after eccentric exercise. J Appl Physiol, 89(6), 2325–2332. doi: 10.1152/jappl.2000.89.6.2325 CR - Sung, E., Han, A., Hinrichs, T., Vorgerd, M., Manchado, C., & Platen, P. (2014). Effects of follicular versus luteal phase-based strength training in young women. SpringerPlus, 3, 668. doi: 10.1186/2193-1801-3-668 CR - Tarnopolsky, M. A., & Phillips, S. M. (1997). Gender differences in exercise and recovery. Sports Med, 24(3), 188-193. doi: 10.2165/00007256-199724030-00002 CR - Tarnopolsky, M. A., Atkinson, S. A., & MacDougall, J. D. (1994). Gender differences in substrate metabolism during endurance exercise. J Appl Physiol, 76(2), 640-646. CR - Telford, R. D., Cunningham, R. B., & Telford, E. R. (2016). The effect of exercise on cardiovascular function and performance: A gender-specific perspective. Br J Sports Med, 50(2), 101-106. doi: 10.1136/bjsports-2015-095245 CR - Wideman, L., Weltman, J. Y., Patrie, J. T., Bowers, C. Y., Shah, N., Story, S., & Weltman, A. (2002). Growth hormone release during acute and chronic aerobic and resistance exercise: Recent findings. Sports Med, 32(15), 987–1004. doi: 10.2165/00007256-200232150-00001 UR - https://doi.org/10.31459/turkjkin.1692902 L1 - https://dergipark.org.tr/en/download/article-file/4842134 ER -