TY - JOUR T1 - Modeling Vehicle Number Change and Carbon Footprint Trends in Turkey (2030–2040) Using Polynomial Regression TT - Türkiye’de 2030–2040 Arasında Araç Sayısı Değişimi ile Karbon Ayak İzi Eğilimlerinin Polinom Regresyon ile Modellenmesi AU - Söyler, Hüseyin AU - Karaoğlu, Ahmet PY - 2025 DA - October Y2 - 2025 DO - 10.51513/jitsa.1695061 JF - Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi JO - Jitsa PB - Bandirma Onyedi Eylul University WT - DergiPark SN - 2636-820X SP - 133 EP - 146 VL - 8 IS - 2 LA - en AB - This study analyzes the changes in registered vehicle types in Turkey from 2004 to 2024 and presents forecasts for vehicle numbers and transportation-related carbon footprint for the years 2030, 2035, and 2040. Using a polynomial regression-based time series model, future trends for gasoline, diesel, and LPG-powered vehicles are projected, and their environmental impacts are evaluated under three distinct policy scenarios. The results show that if fossil-fueled vehicles continue to dominate, the carbon footprint will increase significantly; however, a rapid transition to electric and hybrid vehicles can substantially reduce emissions. The scenario-based projections indicate that advanced sustainability policies could achieve meaningful reductions in emissions by 2040. This study offers evidence-based policy recommendations to support Turkey’s pathway toward its 2053 Net Zero Emission target, emphasizing the critical role of low-carbon mobility transitions. KW - Sustainable transportation KW - carbon footprint KW - electric vehicles KW - time series analysis KW - Polynomial Regression model KW - Turkey transportation sector. N2 - Bu çalışma, Türkiye'de 2004–2024 yılları arasında tescilli araç türlerindeki değişimleri analiz ederek, 2030, 2035 ve 2040 yılları için araç sayısı ve ulaşım kaynaklı karbon ayak izi tahminleri sunmaktadır. Polinom regresyon tabanlı zaman serisi modellemesi ile benzinli, dizel ve LPG'li araçların gelecekteki eğilimleri öngörülmüş, bu eğilimlerin karbon emisyonlarına etkisi üç farklı politika senaryosu altında değerlendirilmiştir. Bulgular, fosil yakıtlı araçların yaygınlığının sürmesi durumunda karbon ayak izinin artmaya devam edeceğini; ancak elektrikli ve hibrit araçların yaygınlaştırılmasıyla bu artışın önemli ölçüde azaltılabileceğini göstermektedir. Özellikle ileri düzey sürdürülebilirlik politikalarının uygulandığı senaryoda 2040 yılına kadar emisyonlarda anlamlı bir azalma elde edilebileceği ortaya konmuştur. Çalışma, Türkiye’nin 2053 Net Sıfır Emisyon hedefi doğrultusunda ulaşım sektörü için veri temelli politika önerileri sunmaktadır. CR - Ağbulut, Ü. (2022). Forecasting of transportation-related energy demand and CO2 emissions in Turkey with different machine learning algorithms. Sustainable Production and Consumption, 29, 141-157. https://doi.org/10.1016/j.spc.2021.10.001 CR - Asgarian, F., Hejazi, S. R., Khosroshahi, H., & Safarzadeh, S. (2024). Vehicle pricing considering EVs promotion and public transportation investment under governmental policies on sustainable transportation development: The case of Norway. Transport Policy, 153, 204-221. https://doi.org/10.1016/j.tranpol.2024.05.017 CR - Awan, A., Alnour, M., Jahanger, A., & Onwe, J. C. (2022). Do technological innovation and urbanization mitigate carbon dioxide emissions from the transport sector? Technology in Society, 71, 102128. https://doi.org/10.1016/j.techsoc.2022.102128 CR - Belany, P., Hrabovsky, P., Sedivy, S., Cajova Kantova, N., & Florkova, Z. (2024). A Comparative Analysis of Polynomial Regression and Artificial Neural Networks for Prediction of Lighting Consumption. Buildings, 14(6), 1712. https://doi.org/10.3390/buildings14061712 CR - Bleviss, D. L. (2021). Transportation is critical to reducing greenhouse gas emissions in the United States. WIREs Energy and Environment, 10(2), e390. https://doi.org/10.1002/wene.390 CR - Brand, C., Anable, J., & Morton, C. (2019). Lifestyle, efficiency and limits: Modelling transport energy and emissions using a socio-technical approach. Energy Efficiency, 12(1), 187-207. https://doi.org/10.1007/s12053-018-9678-9 CR - Cevheribucak, G. (2021). Energy Transition and Sustainable Road Transportation in Turkey: Multiple Policy Challenges for Inclusive Change. Frontiers in Sustainable Cities, 3, 631337. https://doi.org/10.3389/frsc.2021.631337 CR - Cremades, L., & Canals Casals, L. (2022). Analysis of the Future of Mobility: The Battery Electric Vehicle Seems Just a Transitory Alternative. Energies, 15(23), 9149. https://doi.org/10.3390/en15239149 CR - Dalianis, G., Nanaki, E., Xydis, G., & Zervas, E. (2016). New Aspects to Greenhouse Gas Mitigation Policies for Low Carbon Cities. Energies, 9(3), 128. https://doi.org/10.3390/en9030128 CR - De Abreu, V. H. S., Santos, A. S., & Monteiro, T. G. M. (2022). Climate Change Impacts on the Road Transport Infrastructure: A Systematic Review on Adaptation Measures. Sustainability, 14(14), 8864. https://doi.org/10.3390/su14148864 CR - Dönmezçelik, O., Koçak, E., & Örkcü, H. H. (2023). Towards net zero emissions target: Energy modelling of the transport sector in Türkiye. Energy, 279, 128064. https://doi.org/10.1016/j.energy.2023.128064 CR - Driscoll, P. A., Theodórsdóttir, Á. H., Richardson, T., & Mguni, P. (2012). Is the Future of Mobility Electric? Learning from Contested Storylines of Sustainable Mobility in Iceland. European Planning Studies, 20(4), 627-639. https://doi.org/10.1080/09654313.2012.665036 CR - Ferrer, A. L. C., & Thomé, A. M. T. (2023). Carbon Emissions in Transportation: A Synthesis Framework. Sustainability, 15(11), 8475. https://doi.org/10.3390/su15118475 CR - Fulton, L., Lah, O., & Cuenot, F. (2013). Transport Pathways for Light Duty Vehicles: Towards a 2° Scenario. Sustainability, 5(5), 1863-1874. https://doi.org/10.3390/su5051863 CR - Güzel, T. D., & Alp, K. (2020). Modeling of greenhouse gas emissions from the transportation sector in Istanbul by 2050. Atmospheric Pollution Research, 11(12), 2190-2201. https://doi.org/10.1016/j.apr.2020.08.034 CR - Hart, R., Kyriakopoulou, E., & Lu, T. (2024). Urban Transport Policies and Net Zero Emissions in the European Union. Annual Review of Resource Economics, 16(1), 187-206. https://doi.org/10.1146/annurev-resource-101623-101611 CR - Höltl, A., Macharis, C., & De Brucker, K. (2017). Pathways to Decarbonise the European Car Fleet: A Scenario Analysis Using the Backcasting Approach. Energies, 11(1), 20. https://doi.org/10.3390/en11010020 CR - IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 2: Energy. Intergovernmental Panel on Climate Change. Erişim Tarihi, 20 Haziran 2025, https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html CR - Isik, M., Sarica, K., & Ari, I. (2020). Driving forces of Turkey’s transportation sector CO2 emissions: An LMDI approach. Transport Policy, 97, 210-219. https://doi.org/10.1016/j.tranpol.2020.07.006 CR - Katircioğlu, S., & Katircioğlu, S. (2018). Testing the role of urban development in the conventional Environmental Kuznets Curve: Evidence from Turkey. Applied Economics Letters, 25(11), 741-746. https://doi.org/10.1080/13504851.2017.1361004 CR - Krause, J., Thiel, C., Tsokolis, D., Samaras, Z., Rota, C., Ward, A., Prenninger, P., Coosemans, T., Neugebauer, S., & Verhoeve, W. (2020). EU road vehicle energy consumption and CO2 emissions by 2050 – Expert-based scenarios. Energy Policy, 138, 111224. https://doi.org/10.1016/j.enpol.2019.111224 CR - Leach, F., Kalghatgi, G., Stone, R., & Miles, P. (2020). The scope for improving the efficiency and environmental impact of internal combustion engines. Transportation Engineering, 1, 100005. https://doi.org/10.1016/j.treng.2020.100005 CR - Linton, C., Grant-Muller, S., & Gale, W. F. (2015). Approaches and Techniques for Modelling CO2 Emissions from Road Transport. Transport Reviews, 35(4), 533-553. https://doi.org/10.1080/01441647.2015.1030004 CR - Naimoglu, M., & Akal, M. (2023). The relationship between energy technology, energy efficiency, renewable energy, and the environment in Türkiye. Journal of Cleaner Production, 418, 138144. https://doi.org/10.1016/j.jclepro.2023.138144 CR - Ostertagová, E. (2012). Modelling using Polynomial Regression. Procedia Engineering, 48, 500-506. https://doi.org/10.1016/j.proeng.2012.09.545 CR - Springel, K. (2021). It’s Not Easy Being “Green”: Lessons from Norway’s Experience with Incentives for Electric Vehicle Infrastructure. Review of Environmental Economics and Policy, 15(2), 352-359. https://doi.org/10.1086/715549 CR - Stamos, I., Mitsakis, E., & Grau, J. M. S. (2015). Roadmaps for Adaptation Measures of Transportation to Climate Change. Transportation Research Record: Journal of the Transportation Research Board, 2532(1), 1-12. https://doi.org/10.3141/2532-01 CR - Şen, M., Yiğiter, M. S., & Özcan, M. (2023). Why are consumers switching to electric vehicles? Analyzing consumers preferences for electric vehicles. Case Studies on Transport Policy, 14, 101108. https://doi.org/10.1016/j.cstp.2023.101108 CR - TÜİK. (2025.). Tüik veri portalı, Erişim tarihi 25 Şubat 2025, https://data.tuik.gov.tr/Kategori/GetKategori?p=ulastirma-ve-haberlesme-112&dil=1 CR - Winkler, L., Pearce, D., Nelson, J., & Babacan, O. (2023). The effect of sustainable mobility transition policies on cumulative urban transport emissions and energy demand. Nature Communications, 14(1), 2357. https://doi.org/10.1038/s41467-023-37728-x CR - Zhang, X., Xie, J., Rao, R., & Liang, Y. (2014). Policy Incentives for the Adoption of Electric Vehicles across Countries. Sustainability, 6(11), 8056-8078. https://doi.org/10.3390/su6118056 UR - https://doi.org/10.51513/jitsa.1695061 L1 - https://dergipark.org.tr/en/download/article-file/4850725 ER -