TY - JOUR T1 - Drying behavior and quality assessment of nectarine slices dried by different drying methods TT - Farklı kurutma yöntemleriyle kurutulan nektarin dilimlerinin kuruma davranışı ve kalite değerlendirmesi AU - Polat, Ahmet PY - 2025 DA - August Y2 - 2025 DO - 10.37908/mkutbd.1695251 JF - Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi JO - MKU. Tar. Bil. Derg. PB - Hatay Mustafa Kemal University WT - DergiPark SN - 2667-7733 SP - 611 EP - 628 VL - 30 IS - 2 LA - en AB - In this study, nectarines were dried using four methods: microwave, hot air, microwave-hot air combination, and freeze drying. The effects of these methods were evaluated based on drying time, moisture diffusion, modeling, color, rehydration, energy use, and surface temperature. Two different microwave power values (200 and 300 W) and a single temperature value (50 °C) were used for product drying. The relation of the length of drying time of nectarine samples according to the methods was found as Freeze-dry>hot air>microwave>microwave-hot air. While the lowest effective moisture diffusion coefficient was obtained in freeze dry method, the highest effective moisture diffusion coefficient was found in 300 W-50 °C application. Midilli et al. model could be chosen to represent the thin-layer drying of nectarine slices for all cases. The greatest total color change (∆E) was observed in samples dried at 300 W-50 °C, whereas the minimal color change was recorded in the freeze-dried samples. Both rehydration capacity values (3.152±0.053) and energy consumption (4.152±0.215) values of freeze dried samples were found to be higher than the other methods. The highest product surface temperatures were found in products dried by microwave method. The study indicates that microwave–hot air drying offers shorter drying time with acceptable quality, while freeze drying, though less energy-efficient, provides superior quality. KW - Nectarine KW - Drying KW - Color KW - Energy N2 - Bu çalışmada, nektarinler dört yöntem kullanılarak kurutulmuştur: mikrodalga, sıcak hava, mikrodalga-sıcak hava kombinasyonu ve dondurarak kurutma. Bu yöntemlerin etkileri kurutma süresi, nem difüzyonu, modelleme, renk, rehidrasyon, enerji kullanımı ve yüzey sıcaklığı temelinde değerlendirilmiştir. Ürün kurutması için iki farklı mikrodalga güç değeri (200 ve 300 W) ve tek bir sıcaklık değeri (50 °C) kullanılmıştır. Nektarin örneklerinin kuruma sürelerinin yöntemlere göre ilişkisi Dondurarak-kurutma>sıcak hava>mikrodalga>mikrodalga-sıcak hava şeklinde bulunmuştur. En düşük etkin difüzyon katsayısı dondurarak kurutma yönteminde elde edilirken, en yüksek etkin difüzyon katsayısı 300W-50 °C uygulamasında bulunmuştur. Midilli ve ark. modeli tüm durumlar için nektarin dilimlerinin ince tabaka kurutmasını temsil etmek üzere seçilebilir. En büyük toplam renk değişimi (∆E) 300 W-50 °C’de kurutulan örneklerde gözlenirken, en az renk değişimi dondurarak kurutulan örneklerde kaydedilmiştir. Dondurularak kurutulmuş numunelerin hem rehidrasyon kapasitesi değerleri (3,152±0,053) hem de enerji tüketimi (4.152±0.215) değerleri diğer yöntemlere göre daha yüksek bulunmuştur. En yüksek ürün yüzey sıcaklıkları mikrodalga yöntemiyle kurutulan ürünlerde bulunmuştur. Çalışma, mikrodalga–sıcak hava ile kurutmanın daha kısa sürede kabul edilebilir kalite sağladığını, dondurarak kurutmanın ise daha düşük enerji verimliliğine rağmen üstün kalite sunduğunu göstermektedir. CR - Ahamed, S., Saha, C.K., Sarkar, S., & Alam, M.M. (2023). Effect of paddy drying methods on the performance of rice mills in Bangladesh. Drying Technology, 41 (1), 46-60. https://doi.org/10.1080/07373937.2022.2083633 CR - Alaei, B., & Chayjan, R.A. (2025). Microwave-hot air for rapid dehydration of nectarine chips: optimization of quality and energy efficiency. Food and Humanity, 100626. https://doi.org/10.1016/j.foohum.2025.100626 CR - Altay, K., Hayaloglu, A.A., & Dirim, S.N. (2019). Determination of the drying kinetics and energy efficiency of purple basil (Ocimum basilicum L.) leaves using different drying methods. Heat and Mass Transfer, 55, 2173-2184. https://doi.org/10.1007/s00231-019-02570-9 CR - Amiri Chayjan, R., & Shadidi, B. (2014). Modeling high‐moisture Faba bean drying in fixed and semi‐fluidized bed conditions. Journal of Food Processing and Preservation, 38 (1), 200-211. https://doi.org/10.1111/j.1745-4549.2012.00766.x CR - AOAC (1980). Moisture in dried fruits. In: Horowitz, W. (Ed.), Official Method of Analysis of the Association of Official Analytical Chemists, 13th ed. Washington, DC (22.013 (7)). CR - Argyropoulos, D., Heindl, A., & Müller, J. (2011). Assessment of convection, hot-air combined with microwave-vacuum and freeze-drying methods for mushrooms with regard to product quality. International Journal of Food Science and Technology, 46 (2), 333-342. https://doi.org/10.1111/j.1365-2621.2010.02500.x CR - Belghith, A., Azzouz, S., & ElCafsi, A. (2016). Desorption isotherms and mathematical modeling of thin layer drying kinetics of tomato. Heat and Mass Transfer, 52, 407-419. https://doi.org/10.1007/s00231-015-1560-0 CR - Bhatta, S., Stevanovic Janezic, T., & Ratti, C. (2020). Freeze-drying of plant-based foods. Foods, 9 (1), 87. https://doi.org/10.3390/foods9010087 CR - Bhattacharya, M., Srivastav, P.P., & Mishra, H.N. (2015). Thin-layer modeling of convective and microwave-convective drying of oyster mushroom (Pleurotus ostreatus). Journal of Food Science and Technology, 52, 2013-2022. https://doi.org/10.1007/s13197-013-1209-2 CR - Boateng, I.D., Soetanto, D.A., Yang, X.M., Zhou, C., Saalia, F.K., & Li, F. (2021). Effect of pulsed‐vacuum, hot‐air, infrared, and freeze‐drying on drying kinetics, energy efficiency, and physicochemical properties of Ginkgo biloba L. seed. Journal of Food Process Engineering, 44 (4), e13655. https://doi.org/10.1111/jfpe.13655 CR - Caliskan, G., & Dirim, S.N. (2017). Drying characteristics of pumpkin (Cucurbita moschata) slices in convective and freeze dryer. Heat and Mass Transfer, 53, 2129-2141. https://doi.org/10.1007/s00231-017-1967-x CR - Crank, J. (1979). The mathematics of diffusion (2nd ed.). Oxford University Press, New York, USA, pp. 203-254. CR - Cuccurullo, G., Metallo, A., Corona, O., & Cinquanta, L. (2019). Comparing different processing methods in apple slice drying. Part 1. Performance of microwave, hot air and hybrid methods at constant temperatures. Biosystems Engineering, 188, 331-344. https://doi.org/10.1016/j.biosystemseng.2019.10.021 CR - Dehghannya, J., Bozorghi, S., & Heshmati, M.K. (2018). Low temperature hot air drying of potato cubes subjected to osmotic dehydration and intermittent microwave: Drying kinetics, energy consumption and product quality indexes. Heat and Mass Transfer, 54, 929-954. https://doi.org/10.1007/s00231-017-2202-5 CR - Demirel, F., & Ismail, O. (2017). Investigation of the effect of a hybrid drying method on the color quality of nectarine slices and energy consumption. Studia Universitatis Babes-bolyai Chemia, 62 (1). https://doi.org/10.24193/subbchem.2017.1.21 CR - Dev, S.R.S., Geetha, P., Orsat, V., Gariépy, Y., & Raghavan, G.S.V. (2011). Effects of microwave-assisted hot air drying and conventional hot air drying on the drying kinetics, color, rehydration, and volatiles of Moringa oleifera. Drying Technology, 29 (12), 1452-1458. https://doi.org/10.1080/07373937.2011.587926 CR - Ergün, K., Çalışkan, G., & Dirim, S.N. (2016). Determination of the drying and rehydration kinetics of freeze dried kiwi (Actinidia deliciosa) slices. Heat and Mass Transfer, 52 (12), 2697-2705. https://doi.org/10.1007/s00231-016-1773-x CR - Ganesapillai, M., Regupathi, I., & Murugesan, T. (2011). Modeling of thin layer drying of banana (Nendran spp) under microwave, convective and combined microwave-convective processes. Chemical Product and Process Modeling, 6 (1). https://doi.org/doi.org/10.2202/1934-2659.1479 CR - Guiné, R.P., & Barroca, M.J. (2012). Effect of drying treatments on texture and color of vegetables (pumpkin and green pepper). Food and Bioproducts Processing, 90 (1), 58-63. https://doi.org/10.1016/j.fbp.2011.01.003 CR - Horuz, E., & Maskan, M. (2015). Hot air and microwave drying of pomegranate (Punica granatum L.) arils. Journal of Food Science and Technology, 52, 285-293. https://doi.org/10.1007/s13197-013-1032-9 CR - Horuz, E., Bozkurt, H., Karataş, H., & Maskan, M. (2017). Drying kinetics of apricot halves in a microwave-hot air hybrid oven. Heat and Mass Transfer, 53 (6), 2117-2127. https://doi.org/10.1007/s00231-017-1973-z CR - Ismail, O., Kipcak, A.S., Doymaz, İ., & Piskin, S. (2017). Thin-layer drying kinetics of nectarine slices using IR, MW and hybrid methods. Bulgarian Chemical Communications, 49 (1), 92-100. CR - Izli, N., Izli, G., & Taskin, O. (2018). Impact of different drying methods on the drying kinetics, color, total phenolic content and antioxidant capacity of pineapple. CyTA-Journal of Food, 16 (1), 213-221. https://doi.org/10.1080/19476337.2017.1381174 CR - İlter, I., Akyıl, S., Devseren, E., Okut, D., Koç, M., & Kaymak Ertekin, F. (2018). Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics. Heat and Mass Transfer, 54, 2101-2112. https://doi.org/10.1007/s00231-018-2294-6 CR - İsmail, O., Beyribey, B., & Doymaz, İ. (2016). Effect of drying methods on drying characteristic, energy consumption and color of nectarine. Journal of Thermal Engineering, 2 (2), 801-806. CR - Jia, Y., Khalifa, I., Hu, L., Zhu, W., Li, J., Li, K., & Li, C. (2019). Influence of three different drying techniques on persimmon chips’ characteristics: A comparison study among hot-air, combined hot-air-microwave, and vacuum-freeze drying techniques. Food and Bioproducts Processing, 118, 67-76. https://doi.org/10.1016/j.fbp.2019.08.018 CR - Kumar, C., & Karim, M.A. (2019). Microwave-convective drying of food materials: A critical review. Critical Reviews in Food Science and Nutrition, 59 (3), 379-394. https://doi.org/10.1080/10408398.2017.1373269 CR - Li, X., Liu, J., Cai, J., Xue, L., Wei, H., Zhao, M., & Yang, Y. (2021). Drying characteristics and processing optimization of combined microwave drying and hot air drying of Termitomyces albuminosus mushroom. Journal of Food Processing and Preservation, 45 (12), e16022. https://doi.org/10.1111/jfpp.16022 CR - Liu, Z.L., Nan, F., Zheng, X., Zielinska, M., Duan, X., Deng, L. Z., ... & Xiao, H. W. (2020). Color prediction of mushroom slices during drying using Bayesian extreme learning machine. Drying Technology, 38 (14), 1869-1881. https://doi.org/10.1080/07373937.2019.1675077 CR - Md Salim, N.S., Gariépy, Y., & Raghavan, V. (2017). Hot air drying and microwave‐assisted hot air drying of broccoli stalk slices (Brassica oleracea L. var. italica). Journal of Food Processing and Preservation, 41 (3), e12905. https://doi.org/10.1111/jfpp.12905 CR - Midilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for single-layer drying. Drying Technology, 20 (7), 1503-1513. https://doi.org/10.1081/DRT-120005864 CR - Miraei Ashtiani, S.H., Sturm, B., & Nasirahmadi, A. (2018). Effects of hot-air and hybrid hot air-microwave drying on drying kinetics and textural quality of nectarine slices. Heat and Mass Transfer, 54, 915-927. https://doi.org/10.1007/s00231-017-2187-0 CR - Motevali, A., Minaei, S., & Khoshtagaza, M.H. (2011). Evaluation of energy consumption in different drying methods. Energy Conversion and Management, 52 (2), 1192-1199. https://doi.org/10.1016/j.enconman.2010.09.014 CR - Perea-Flores, M.J., Garibay-Febles, V., Chanona-Pérez, J.J., Calderón-Domínguez, G., Méndez-Méndez, J.V., Palacios-González, E., & Gutiérrez-López, G.F. (2012). Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Industrial Crops and Products, 38, 64-71. https://doi.org/10.1016/j.indcrop.2012.01.008 CR - Pirnazari, K., Esehaghbeygi, A., & Sadeghi, M. (2016). Modeling the electrohydrodynamic (EHD) drying of banana slices. International Journal of Food Engineering, 12 (1), 17-26. https://doi.org/10.1515/ijfe-2015-0005 CR - Sacilik, K., & Unal, G. (2005). Dehydration characteristics of Kastamonu garlic slices. Biosystems Engineering, 92 (2), 207-215. https://doi.org/10.1016/j.biosystemseng.2005.06.006 CR - Shi, Q., Zheng, Y., & Zhao, Y. (2013). Mathematical modeling on thin-layer heat pump drying of yacon (Smallanthus sonchifolius) slices. Energy Conversion and Management, 71, 208-216. https://doi.org/10.1016/j.enconman.2013.03.032 CR - Shi, S., Feng, J., An, G., Kong, B., Wang, H., Pan, N., & Xia, X. (2021). Dynamics of heat transfer and moisture in beef jerky during hot air drying. Meat Science, 182, 108638. https://doi.org/10.1016/j.meatsci.2021.108638 CR - Sun, Q., Chen, L., Zhou, C., Okonkwo, C.E., & Tang, Y. (2022). Effects of cutting and drying method (vacuum freezing, catalytic infrared, and hot air drying) on rehydration kinetics and physicochemical characteristics of ginger (Zingiber officinale Roscoe). Journal of Food Science, 87 (9), 3797-3808. https://doi.org/10.1111/1750-3841.16264 CR - Sunthonvit, N., Srzednicki, G., & Craske, J. (2007). Effects of drying treatments on the composition of volatile compounds in dried nectarines. Drying Technology, 25 (5), 877-881. https://doi.org/10.1080/07373930701370274 CR - Taskin, O. (2020). Evaluation of freeze drying for whole, half cut and puree black chokeberry (Aronia melanocarpa L.). Heat and Mass Transfer, 56, 2503-2513. https://doi.org/10.1007/s00231-020-02867-0 CR - Taşkın, O., İzli, G., & İzli, N. (2018). Convective drying kinetics and quality parameters of european cranberrybush. Journal of Agricultural Sciences, 24 (3), 349-358. https://doi.org/10.15832/ankutbd.456654 CR - Tepe, T.K., & Kadakal, Ç. (2022). Determination of drying characteristics, rehydration properties, and shrinkage ratio of convective dried melon slice with some pretreatments. Journal of Food Processing and Preservation, 46 (6), e16544. https://doi.org/10.1111/jfpp.16544 CR - Varith, J., Dijkanarukkul, P., Achariyaviriya, A., & Achariyaviriya, S. (2007). Combined microwave-hot air drying of peeled longan. Journal of Food Engineering, 81 (2), 459-468. https://doi.org/10.1016/j.jfoodeng.2006.11.023 CR - Vásquez-Parra, J.E., Ochoa-Martínez, C.I., & Bustos-Parra, M. (2013). Effect of chemical and physical pretreatments on the convective drying of cape gooseberry fruits (Physalis peruviana). Journal of Food Engineering, 119 (3), 648-654. https://doi.org/10.1016/j.jfoodeng.2013.06.037 CR - Vega, A.M.N., Sturm, B., & Hofacker, W. (2016). Simulation of the convective drying process with automatic control of surface temperature. Journal of Food Engineering, 170, 16-23. https://doi.org/10.1016/j.jfoodeng.2015.08.033 CR - Wray, D., & Ramaswamy, H.S. (2015). Novel concepts in microwave drying of foods. Drying Technology, 33 (7), 769-783. https://doi.org/10.1080/07373937.2014.985793 CR - Yanclo, L.A., Sigge, G., Belay, Z.A., October, F., & Caleb, O.J. (2022). Microstructural, biochemical and drying characteristics of dehydrated ‘Sunectwentyone’nectarines as affected by sodium metabisulphite. Food Science and Biotechnology, 31 (3), 311-322. https://doi.org/10.1007/s10068-022-01039-6 CR - Yildiz, G., & İzli, G. (2019). Influence of microwave and microwave‐convective drying on the drying kinetics and quality characteristics of pomelo. Journal of Food Processing and Preservation, 43 (6), e13812. https://doi.org/10.1111/jfpp.13812 CR - Zhao, S.Y., An, N.N., Zhang, K.Y., Li, D., Wang, L.J., & Wang, Y. (2023). Evaluation of drying kinetics, physical properties, bioactive compounds, antioxidant activity and microstructure of Acanthopanax sessiliflorus fruits dried by microwave-assisted hot air drying method. Journal of Food Engineering, 357, 111642. https://doi.org/10.1016/j.jfoodeng.2023.111642 CR - Zhu, A., & Shen, X. (2014). The model and mass transfer characteristics of convection drying of peach slices. International Journal of Heat and Mass Transfer, 72, 345-351. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.001 UR - https://doi.org/10.37908/mkutbd.1695251 L1 - https://dergipark.org.tr/en/download/article-file/4851528 ER -