TY - JOUR T1 - Effect of Multiplicative Calculus on Special Ruled Surface Pairs AU - Karaca, Emel AU - Koçak, Zehra Nur PY - 2025 DA - October Y2 - 2025 JF - International Electronic Journal of Geometry JO - Int. Electron. J. Geom. PB - Kazım İlarslan WT - DergiPark SN - 1307-5624 SP - 437 EP - 447 VL - 18 IS - 2 LA - en AB - This paper explores the application and advantages of multiplicative analysis in surface theory. Unlike additive methods, multiplicative analysis focuses on the interaction of variables through product-based relationships, offering a more accurate representation in contexts involving exponential growth, ratios, and scaling. One key advantage of multiplicative analysis is its ability to simplify complex problems by exploiting factorization and invariance properties, enabling more efficient problem-solving strategies. This study highlights both theoretical foundations and practical benefits of using multiplicative approaches in special ruled surface pairs for mathematical research. Hence, we define new special ruled surface pairs called mul-Bertrand, mul-involute-evolute and mul-Mannheim ruled surface pairs. Moreover, some illustrative examples are given to validate the results. KW - Multiplicative calculus KW - special partner surfaces KW - multiplicative Euclidean space CR - Aniszewska, D., Rybaczuk, M.: Analysis of the multiplicative Lorentz system., Chaos, Solitons and Fractals. 25 (1), 79–90 (2005). https://doi.org/10.1016/j.chaos.2004.09.060 CR - Aniszewska, D.: Multiplicative Runge-Kutta methods. Nonlinear Dyn. 50 (1), 265-272 (2007). https://doi.org/10.1007/s11071-006-9156-3 CR - Aydın, M. E., Has, A., Yılmaz, B.:A non-Newtonian approach in differential geometry of curves: multiplicative rectifying curves. The Korean Mathematical Society. 849-866 (2024). https://doi.org/10.1088/1402-4896/ad32b7 CR - Aydın, M. E., Has, A., Yılmaz, B.:Multiplicative rectifying submanifolds of multiplicative Euclidean space. Mathematical Methods in the Applied Sciences. 48 (1), 329-339 (2025). https://doi.org/10.1002/mma.10329 CR - Bashirov, A. E., Rıza M.:On complex multiplicative differentiation. TWMS Journal of Applied and Engineering Mathematics. 1 (1), 75-85 (2011). CR - Bashirov, A.E., Kurpınar E.M., Özyapıcı, A.: Multiplicative calculus and its applications. J.Math. Anal. Appl. 337 (1), 36–48 (2008). https://doi.org/10.1016/j.jmaa.2007.03.081 CR - Campbell, D.:Multiplicative calculus and student projects. Primus. 9 (4), 327-332 (1999). https://doi.org/10.1080/10511979908965938 CR - Ceyhan, H., Özdemir, Z., Gök I.: Multiplicative generalized tube surfaces with multiplicative quaternions algebra. Mathematical Methods in the Applied Sciences. 47 (11), 9157-9168 (2024). https://doi.org/10.1002/mma.10065 CR - Do Carmo, M. P.: Differential Geometry of Curves and Surfaces: Revised and Updated Second Edition. Courier Dover Publications (2016). CR - Farouki, R. T.: The approximation of non-degenerate offset surface surfaces. Comput. Aided Geom. Design. 3, 15-43 (1986). https://doi.org/10.1016/0167-8396(86)90022-1 CR - Georgiev, S. G.: Multiplicative Differential Geometry. Chapman and Hall/CRC, New York, USA (2022). CR - Georgiev, S. G., Zennir, K.: Multiplicative Differential Calculus. Chapman and Hall/CRC, New York, USA (2022). CR - Has, A., Yılmaz, B., Yıldırım, H.:A non-Newtonian perspective on multiplicative Lorentz–Minkowski space Mathematical Methods in the Applied Sciences. 47 (18), 13875-13888 (2024). https://doi.org/10.1002/mma.10243 CR - Has, A., Yılmaz, B.: On non-Newtonian helices in multiplicative Euclidean space. Fundamentals of Contemporary Mathematical Sciences. 6 (2), 196-217 (2025). https://doi.org/10.54974/fcmathsci.1644427 CR - Kasap, E., Yuce, S., Kuruoglu, N.: The involute-evolute offset surfaces of ruled surfaces. Iranian Journal of Science and Technology. 33 (A2), 195-201 (2009). https://doi.org/10.22099/ijsts.2009.2215 CR - Kasap, E., Kuruoglu, N.: On the some new characteristic properties of the pair of the Bertrand ruled surfaces. Pure Appl. Math. Sci. 53, 73-79 (2001). CR - Orbay, K., Kasap, E., Aydemir, I.: Mannheim offset surfaces of ruled surfaces. Mathematical Problems in Enginnering. (2009). https://doi.org/10.1155/2009/160917 CR - Ravani, B., Ku, T.S.: Bertrand offset surfaces of ruled and developable surfaces. Computer-Aided Design. 23, 145-152 (1991). https://doi.org/10.1016/0010-4485(91)90005-H CR - Stanley, D.:A multiplicative calculus. Primus IX. 4, 310-326 (1999). https://doi.org/10.1080/10511979908965937 UR - https://dergipark.org.tr/en/pub/iejg/issue//1696083 L1 - https://dergipark.org.tr/en/download/article-file/4855541 ER -