TY - JOUR T1 - Yüksek Performanslı L-Band Işık Kaynağının Geliştirilmesi ve Karakterizasyonu TT - Development and Characterization of a High Performance L-Band Light Source AU - Akçeşme, Özcan AU - Yücel, Murat PY - 2025 DA - July Y2 - 2025 DO - 10.2339/politeknik.1696912 JF - Politeknik Dergisi PB - Gazi University WT - DergiPark SN - 2147-9429 SP - 1 EP - 1 LA - tr AB - Bu çalışmada, kendiliğinden yükseltilmiş yayılım (ASE) tabanlı L-band ışık kaynağı geliştirilmiş ve karakterizasyonu yapılmıştır. Literatürdeki mevcut problemlere çözüm sunmak için düşük dalgalanma (ripple) ve yüksek çıkış gücü hedeflenmiş, özel bir L-band ASE kaynağı tasarımı gerçekleştirilmiştir. Çift geçişli çift yönlü pompalama konfigürasyonu kullanılarak, 17 metre uzunluğunda Liekki Er30(4/125) tipi yüksek konsantrasyonlu Erbiyum Katkılı Fiber (EKF) ve iki pompa lazer (980 nm ve 1480 nm) ile 44 nm bant genişliğine ve 3 dB dalgalanmaya ayrıca 31 nm bant genişliğinde 1.01 dB dalgalanmaya sahip bir L-band ASE kaynağı üretilmiştir. Bu özel tasarım sayesinde literatürdeki diğer çalışmalara kıyasla daha kısa EDF kullanılarak, toplam maliyet düşürülmüş ve yüksek performans elde edilmiştir. Çalışma, özellikle fiber optik haberleşme, sensör teknolojileri ve savunma sanayi gibi kritik alanlarda kullanılabilecek ASE ışık kaynaklarına yönelik önemli bir katkı sunmaktadır. KW - ASE KW - Geniş bant ışık kaynağı KW - erbiyum katkılı fiber KW - EKFY N2 - In this study, an amplified spontaneus emission (ASE) based L-band light source has been developed and characterized. Addressing limitations in current literature, a specific L-band ASE source with low ripple and high output power was designed. Using a double-pass bidirectional pumping configuration, the system employs a 17-meter Liekki Er30(4/125) high-concentration erbium-doped fiber (EDF) and two pump lasers (980 nm and 1480 nm) to achieve an L-band ASE spectrum with a bandwidth of 44 nm and a ripple of 3 dB and with a bandwidth of 31 nm and a ripple of 1.01 dB. The design significantly shortens the EDF length compared to other studies, providing an important cost advantage. This optimized L-band ASE source offers superior performance and is highly applicable in critical fields such as optical communication, sensor technologies, and the defense industry. CR - [1] Loconsole, A. M. et al. "Tm: Er: Yb: Ho amplified spontaneous emission source operating from 1480 nm to 2100 nm". in 2020 Italian Conference on Optics and Photonics (ICOP), 1–4, (2020). CR - [2] Pokorný, J., Moravec, O. & Aubrecht, J. "Broadband fiber-optic thulium-doped source of amplified spontaneous emission". in Micro-structured and Specialty Optical Fibres VII, vol. 11773 211–216, (2021). CR - [3] Harun, S. W., Abd Rahman, F., Dimyati, K. & Ahmad, H. "An efficient gain-flattened C-band Erbium-doped fiber amplifier". Laser Physics Letters, 3(11), 536–538, (2006). CR - [4] Dung, J.-C., Chi, S., Wen, S. F. & others. "Gain flattening of erbium-doped fibre amplifier using fibre Bragg gratings". Electronics Letters, 34(6), 555–556, (1998). CR - [5] Yucel, M. & Goktas, H. H. "C band erbium doped fiber amplifier as a flat gain optical amplifier". in 2008 IEEE 16th Signal Processing, Communication and Applications Conference, 1–3, (2008). CR - [6] Yamada, M. et al. "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm". IEEE Photonics Technology Letters, 10(9), 1244–1246, (1998). CR - [7] Göktaş, H. H. & Yücel, M. "Gain flattening filter optimization of the two stage C band erbium doped fiber amplifiers (EDFA)". SAÜ Fen Bilimleri Enstitüsü Dergisi, 10(1), 10–13, (2006). CR - [8] Yigit, E. & Yucel, M. "Three-stage six-pass EDFA preamplifier design and EDFA parameters’ optimization". Optical and Quantum Electronics, 54(1), (2021). CR - [9] [9] Gurkaynak, I. A. et al. "An efficient wide flatness gain bandwidth with parallel hybrid fiber amplifier". Microwave and Optical Technology Letters, 64(2), 251–258, (2021). CR - [10] Yigit, E. & Yucel, M. "Three-stage six-pass EDFA preamplifier design and EDFA parameters’ optimization". Optical and Quantum Electronics, 54(1), (2021). CR - [11] Yucel, M., Aslan, Z., Celebi, F. V. & Goktas, H. H. "Gain and noise figure enhancements of both C and L bands double pass Erbium Doped Fiber Amplifier". in 2013 8th International Conference on Electrical and Electronics Engineering (ELECO), 599–603, (IEEE, 2013). CR - [12] Gurkaynak, I. A. et al. "Widely flatness gain bandwidth with double pass parallel hybrid fiber amplifier". Optical and Quantum Electronics, 53(7), 359, (2021). CR - [13] Dincer, A. & Yücel, M. "Modelling and Optimizations of Triple-Pass TDFAs for Next-Generation Fiber Optical Communication Systems". (2023). CR - [14] Gurkaynak, I. A. et al. "An efficient wide flatness gain bandwidth with parallel hybrid fiber amplifier". Microwave and Optical Technology Letters, 64(2), 251–258, (2022). CR - [15] Talam, D. B., El-Badawy, E.-S. A., Shalaby, H. M. H. & Aly, M. H. "EDFA gain flattening using fiber Bragg gratings employing different host materials". Optical and Quantum Electronics, 52(3), 161, (2020). CR - [16] Gulzar, A. & Qazi, G. "Numerical investigations of double pass, highly selective FBG based DFB-EDFA system for enhanced gain and ASE-mitigation". Optical and Quantum Electronics, 56(11), 1802, (2024). CR - [17] Yıldız, E. "GaSe Yarıiletken Kristallerine Bor Katkılamanın Optik Sınırlama ve İki Foton Soğurma Özellikleri Üzerine Etkileri". Politeknik Dergisi, 26(1), 161–168, (2023). CR - [18] Yücel, M. & Yiğit, E. "İki Aşamalı Üç Geçişli EKFY Tasarımı ve EKFY Parametrelerinin Optimizasyonu". Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 8(2), 335–344, (2020). CR - [19] Yıldırım, R. & Hazer, A. "A New Approach to Increasing the Bandwidth of Fiber-Optic Communication Systems". Journal of Polytechnic, (2023). CR - [20] Yolcu, V. & Yücel, M. "Raman Yükselteç Modeli Üzerine Bir Çalışma". Politeknik Dergisi, 27(4), 1399–1407, (2024). CR - [21] Mirza, J., Ghafoor, S., Habib, N., Kanwal, F. & Qureshi, K. K. "Performance evaluation of praseodymium doped fiber amplifiers". Optical Review, 28(6), 611–618, (2021). CR - [22] Ibrahim, S. A., Mansoor, A., Tuan Mohd Marzuki, T. A. S., Omar, N. Y. M. & Abdul Rashid, H. A. "Comparison of 1480 nm and 980 nm-pumped Gallium-Erbium fiber amplifier". F1000Research, 10 251, (2021). CR - [23] Tan, S. et al. "Parameters Optimization of ASE Source for the Improvement of Optical Power Stability in Space Radiation Environment". Journal of Lightwave Technology, 40(8), 2612–2618, (2022). CR - [24] Jazi, M. K. et al. "The evaluation of various designs for a C and L band superfluorescent source based erbium doped fiber". Laser Physics, 23(6), 65104, (2013). CR - [25] Nafchi, F. M., Shahi, S., Shaffaatifar, M. T., Kanani, M. & Noormohammadi, H. "Novelty design in gain flattening filter of ASE source based on fat ultra-long period fiber grating". Photonic Sensors, 6(3), 243–248, (2016). CR - [26] Lin, H. & Chang, C.-H. "High power C+L-band Erbium ASE source using optical circulator with double-pass and bidirectional pumping configuration". Optics Express, 12(25), 6135, (2004). CR - [27] Gurkaynak, I. A. et al. "An efficient wide flatness gain bandwidth with parallel hybrid fiber amplifier". Microwave and Optical Technology Letters, 64(2), 251–258, (2021). CR - [28] Al-Azzawi, A. A. et al. "Broadband ASE source for S C L bands using hafnia-bismuth based erbium co-doped fibers". Optik, 255 168723, (2022). CR - [29] Tan, S. et al. "Parameters Optimization of ASE Source for the Improvement of Optical Power Stability in Space Radiation Environment". Journal of Lightwave Technology, 40(8), 2612–2618, (2022). CR - [30] Wang, X. et al. "Design and optimization of a high-power L-band ASE fiber source". in SPIE Proceedings, (eds. Hou, X., Zhao, W. & Yao, B.) (2007). CR - [31] Espindola, R. P., Ales, G., Park, J. & Strasser, T. A. "80 nm spectrally flattened, high power erbium amplified spontaneous emission fibre source". Electronics Letters, 36(15), 1263–1265, (2000). CR - [32] Al-Azzawi, A. A. et al. "Broadband ASE source for S+ C+ L bands using hafnia-bismuth based erbium co-doped fibers". Optik, 255 168723, (2022). CR - [33] Zhu, L., He, W., Zhang, Y., Luo, F. & Dong, M. "A high flattening C + L band broadband source based on single pump and the same erbium-doped fiber". Optik, 125(17), 4659–4662, (2014). CR - [34] Yolcu, V. & Yücel, M. "Erbiyum Katkılı Fiber Yükselteç Modelinin Nümerik Analizi". Politeknik Dergisi, 1–1, (2025). CR - [35] Akcesme, O. & Yucel, M. "Generation and Spectrum Analysis of C Band ASE Using Erbium-Doped Fibers with Different Properties". in 2023 10th International Conference on Electrical and Electronics Engineering (ICEEE), 126–130, (2023). CR - [36] Tammela, S., Söderlund, M., Koponen, J., Philippov, V. & Stenius, P. "The potential of direct nanoparticle deposition for the next generation of optical fibers". in (eds. Digonnet, M. J. & Jiang, S.) 61160G, (2006). CR - [37] Yücel, M. & Göktaş, H. H. "Erbiyum Katkılı Fiber Yükselteçlerde (EDFA) Pompalama Dalgaboyu ve Yönünün EDFA Kazancına Etkisi". Politeknik Dergisi, 6(6), 627–635, (2003). CR - [38] Tsai, S.-C., Lee, C.-M., Hsu, S. & Chen, Y.-K. "Characteristic comparison of single-pumped L-band erbium-doped fiber amplified spontaneous emission sources". Optical and quantum electronics, 34(11), 1111–1117, (2002). CR - [39] Wang, X., Ming, H. & Huang, W. "Band selective ASE source for dual-band DWDM device characterization and metro networks". in Passive Components and Fiber-based Devices II, 60194C, (Shanghai, 2005). UR - https://doi.org/10.2339/politeknik.1696912 L1 - https://dergipark.org.tr/en/download/article-file/4859271 ER -