TY - JOUR T1 - Structural Parameters, NLO, HOMO, LUMO, MEP, Chemical Reactivity Descriptors, Mulliken-NPA, Thermodynamic Functions, Hirshfeld Surface Analysis and Molecular Docking of 1,3-Bis(4-methylphenyl)triazine TT - Structural Parameters, NLO, HOMO, LUMO, MEP, Chemical Reactivity Descriptors, Mulliken-NPA, Thermodynamic Functions, Hirshfeld Surface Analysis and Molecular Docking of 1,3-Bis(4-methylphenyl)triazine AU - Ersanlı, Cem Cüneyt AU - Yoğurtçu, Hilal Nur PY - 2025 DA - June Y2 - 2025 DO - 10.47897/bilmes.1697802 JF - International Scientific and Vocational Studies Journal JO - ISVOS PB - Umut SARAY WT - DergiPark SN - 2618-5938 SP - 130 EP - 144 VL - 9 IS - 1 LA - en AB - In the current study, the molecular geometry, electronic characteristics, nonlinear optical (NLO) properties, and potential biological activity of 1,3-bis(4-methylphenyl)triazene (I) were investigated by a combination of experimental crystallographic data and density functional theory (DFT) calculations at the B3LYP/6-311++G(d,p) level. The optimized molecular geometry was in very good agreement with experimental X-ray data, with a low root-mean-square deviation (RMSD) of 0.106 Å, verifying the computational model. The molecule demonstrated high NLO activity, possessing a first-order hyperpolarizability roughly seven times larger than that of urea, and potential application in optoelectronic and photonic devices. Frontier molecular orbital (FMO) calculation demonstrated HOMO–LUMO energy gap of 5.6015 eV in the gas-phase indicating kinetic stability, and solvent-phase calculation indicated higher reactivity and polarity at high-dielectric conditions. Global reactivity descriptors and molecular electrostatic potential (MEP) mapping identified key electrophilic and nucleophilic sites, with implications for the charge distribution of the molecule and probable modes of interaction. Mulliken and natural population analyses (NPA) also revealed electronic behavior, NPA providing more chemically meaningful charge partitioning. Thermodynamic properties -entropy, enthalpy, and heat capacity- exhibited smooth temperature dependence, which established the thermal stability of the compound. Hirshfeld surface and 2D fingerprint plots of the crystal structure highlighted the dominant role played by van der Waals interactions in crystal packing. Molecular docking studies with the HER2 receptor (PDB ID: 3PP0) showed good binding affinity (-9.8 k cal mol⁻¹) with the aid of supporting hydrogen bonding and hydrophobic interactions with prominent amino acid residues, which reflected potential anticancer activity. Combined, the findings emphasize the exciting multifunctionality of I, whose potential uses range from materials science to being a lead scaffold in drug design, particularly for HER2-targeted anticancer drugs. KW - Quantum mechanical calculations KW - Hirshfeld surface analysis KW - Molecular docking N2 - In the current study, the molecular geometry, electronic characteristics, nonlinear optical (NLO) properties, and potential biological activity of 1,3-bis(4-methylphenyl)triazene (I) were investigated by a combination of experimental crystallographic data and density functional theory (DFT) calculations at the B3LYP/6-311++G(d,p) level. The optimized molecular geometry was in very good agreement with experimental X-ray data, with a low root-mean-square deviation (RMSD) of 0.106 Å, verifying the computational model. The molecule demonstrated high NLO activity, possessing a first-order hyperpolarizability roughly seven times larger than that of urea, and potential application in optoelectronic and photonic devices. Frontier molecular orbital (FMO) calculation demonstrated HOMO–LUMO energy gap of 5.6015 eV in the gas-phase indicating kinetic stability, and solvent-phase calculation indicated higher reactivity and polarity at high-dielectric conditions. Global reactivity descriptors and molecular electrostatic potential (MEP) mapping identified key electrophilic and nucleophilic sites, with implications for the charge distribution of the molecule and probable modes of interaction. Mulliken and natural population analyses (NPA) also revealed electronic behavior, NPA providing more chemically meaningful charge partitioning. Thermodynamic properties -entropy, enthalpy, and heat capacity- exhibited smooth temperature dependence, which established the thermal stability of the compound. Hirshfeld surface and 2D fingerprint plots of the crystal structure highlighted the dominant role played by van der Waals interactions in crystal packing. Molecular docking studies with the HER2 receptor (PDB ID: 3PP0) showed good binding affinity (-9.8 k cal mol⁻¹) with the aid of supporting hydrogen bonding and hydrophobic interactions with prominent amino acid residues, which reflected potential anticancer activity. Combined, the findings emphasize the exciting multifunctionality of I, whose potential uses range from materials science to being a lead scaffold in drug design, particularly for HER2-targeted anticancer drugs. CR - P. de M. S. Figueirêdo et al., “Assessment of the biological potential of diaryltriazene-derived triazene compounds,” Sci. Rep., vol. 11, p. 2541, 2021. CR - F. Marchesi, M. Turriziani, G. Tortorelli, G. Avvisati, F. Torino, ve L. De Vecchis, “Triazene compounds: Mechanism of action and related DNA repair systems,” Pharmacol. Res., vol. 56, no. 4, pp. 275-287, 2007. CR - N. Iqbal ve N. Iqbal, “Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications,” Mol. Biol. Int., vol. 2014, p. 852748, 2014. CR - S. Lamichhane, R. P. Rai, A. Khatri, R. Adhikari, B. G. Shrestha, ve S. K. Shrestha, “Screening of phytochemicals as potential anti-breast cancer agents targeting HER2: An in-silico approach,” J. Biomol. Struct. Dyn., vol. 41, no. 3, pp. 897-911, 2023. CR - R. B. O. Ouma, S. M. Ngari, ve J. K. Kibet, “A review of the current trends in computational approaches in drug design and metabolism,” Discov. Public Health, vol. 21, p. 108, 2024. CR - P. C. Agu et al., “Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management,” Sci. Rep., vol. 13, no. 1, p. 13398, 2023. doi: 10.1038/s41598-023-40160-2 CR - M. J. Frisch et al., Gaussian 03, Revision C.02, Gaussian, Inc., 2004. CR - C. Lee, W. Yang, ve R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B, vol. 37, no. 2, pp. 785-789, 1988. doi: 10.1103/PhysRevB.37.785 CR - A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys., vol. 98, no. 7, pp. 5648-5652, 1993. doi: 10.1063/1.464913 CR - R. Dennington, T. Keith, ve J. Millam, GaussView, Version 5.0 [Computer software], Semichem Inc., 2009. CR - R. G. Parr, L. V. Szentpály, ve S. Liu, “Electrophilicity index,” J. Am. Chem. Soc., vol. 121, no. 9, pp. 1922-1924, 1999. doi: 10.1021/ja983494x CR - J. Tomasi, B. Mennucci, ve R. Cammi, “Quantum mechanical continuum solvation models,” Chem. Rev., vol. 105, no. 8, pp. 2999-3094, 2005. doi: 10.1021/cr9904009 CR - M. J. Turner et al., CrystalExplorer17 (Version 17.5) [Computer software], University of Western Australia, 2017. CR - J. J. McKinnon, D. Jayatilaka, ve M. A. Spackman, “Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces,” Chem. Commun., no. 37, pp. 3814-3816, 2007. doi: 10.1039/B704980C CR - M. A. Spackman ve D. Jayatilaka, “Hirshfeld surface analysis,” CrystEngComm, vol. 11, no. 1, pp. 19-32, 2009. doi: 10.1039/B818330A CR - F. L. Hirshfeld, “Bonded-atom fragments for describing molecular charge densities,” Theor. Chim. Acta, vol. 44, no. 2, pp. 129-138, 1977. doi: 10.1007/BF00549096 CR - K. Aertgeerts et al., “Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein,” J. Biol. Chem., vol. 286, no. 21, pp. 18756-18765, 2011. doi: 10.1074/jbc.M110.206193 CR - O. Trott ve A. J. Olson, “AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading,” J. Comput. Chem., vol. 31, no. 2, pp. 455-461, 2010. CR - D. Biovia et al., Discovery Studio Visualizer (Version 17.2) [Computer software], Dassault Systèmes, 2016. CR - N. Karadayı, Ş. Çakmak, M. Odabaşoğlu, ve O. Büyükgüngör, “1,3-Bis(4-methylphenyl)triazene, 1-(4-chlorophenyl)-3-(4-fluorophenyl)triazene and 1-(4-fluorophenyl)-3-(4-methylphenyl)triazene,” Acta Crystallogr. Sect. E Struct. Rep. Online, vol. 61, no. 5, pp. o303-o305, 2005. doi: 10.1107/S0108270105004373 CR - R. G. Parr ve W. Yang, Density-functional theory of atoms and molecules. Oxford University Press, 1989. CR - W. Koch ve M. C. Holthausen, A chemist’s guide to density functional theory, 2nd ed. Wiley-VCH, 2001. CR - Y. Zhao ve D. G. Truhlar, “Density functional theory for highly excited states: The role of exact exchange,” J. Chem. Phys., vol. 128, no. 18, p. 184103, 2008. doi: 10.1063/1.2928720 CR - Y. Zhao, Y. Xie, ve H. F. Schaefer, “Benchmark studies of dipole moments and first hyperpolarizabilities of push-pull π-conjugated systems,” Theor. Chem. Acc., vol. 116, no. 1, pp. 131-137, 2006. doi: 10.1007/s00214-005-0023-6 CR - W. Kohn ve L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev., vol. 140, no. 4A, pp. A1133-A1138, 1965. doi: 10.1103/PhysRev.140.A1133 CR - P. Politzer ve J. S. Murray, “The fundamental nature and role of the electrostatic potential in atoms and molecules,” Theor. Chem. Acc., vol. 108, no. 3, pp. 134-142, 2002. doi: 10.1007/s00214-002-0363-9 CR - W. Yang ve R. G. Parr, “Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis,” Proc. Natl. Acad. Sci. U.S.A., vol. 82, no. 20, pp. 6723-6726, 1985. doi: 10.1073/pnas.82.20.6723 CR - P. Geerlings, F. De Proft, ve W. Langenaeker, “Conceptual density functional theory,” Chem. Rev., vol. 103, no. 5, pp. 1793-1874, 2003. doi: 10.1021/cr990029p CR - R. G. Parr ve R. G. Pearson, “Absolute hardness: companion parameter to absolute electronegativity,” J. Am. Chem. Soc., vol. 105, no. 26, pp. 7512-7516, 1983. doi: 10.1021/ja00364a005 CR - C. J. Cramer ve D. G. Truhlar, “Implicit solvation models: Equilibria, structure, spectra, and dynamics,” Chem. Rev., vol. 99, no. 8, pp. 2161-2200, 1999. doi: 10.1021/cr960149m CR - D. A. McQuarrie ve J. D. Simon, Physical chemistry: A molecular approach. University Science Books, 1999. CR - P. Atkins ve J. de Paula, Atkins’ physical chemistry, 10th ed. Oxford University Press, 2014. CR - K. S. Pitzer, E. R. Lippincott ve R. F. Curl, “The Thermodynamic Properties of Organic Compounds,” J. Am. Chem. Soc., vol. 67, no. 8, pp. 1341-1350, 1945. doi: 10.1021/ja01224a002 CR - L. A. Curtiss, K. Raghavachari, P. C. Redfern ve J. A. Pople, “Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation,” J. Chem. Phys., vol. 106, no. 3, pp. 1063-1079, 1997. doi: 10.1063/1.473182 CR - A. N. Khalilov et al., “Crystal structure and Hirshfeld surface analysis of (2E)-1-phenyl-3-(4-fluorophenyl)prop-2-en-1-one,” Acta Crystallogr. Sect. E: Crystallogr. Commun., vol. 78, no. 2, pp. 525-529, 2022. doi: 10.1107/S2056989022000343 CR - C. Jelsch ve Y. B. M. Bisseyoub, “Deciphering the driving forces in crystal packing by analysis of intermolecular interactions in aromatic hydrocarbons,” IUCrJ, vol. 10, no. 5, pp. 557-567, 2023. doi: 10.1107/S2056989023005043 CR - C. Bissantz, B. Kuhn ve M. Stahl, “A medicinal chemist’s guide to molecular interactions,” J. Med. Chem., vol. 53, no. 14, pp. 5061-5084, 2010. doi: 10.1021/jm100112j CR - S. Başak ve C. C. Ersanlı, “Structure elucidation of Schiff base-containing compound by quantum chemical methods,” Int. Sci. Vocat. Stud. J., vol. 8, no. 2, pp. 129-136, 2024. doi: 10.47897/bilmes.1553500 CR - C. C. Ersanlı ve S. Başak, “Quantum Mechanical Calculations and Molecular Docking Simulation Studies of N-(5-chloro-2-oxobenzyl)-2-hydroxy-5-methylanilinium Compound,” Int. Sci. Vocat. Stud. J., vol. 8, no. 2, pp. 162-177, 2024. doi: 10.47897/bilmes.1573560 CR - S. Öztürk, T. Aycan, Z. Demircioğlu ve C. C. Ersanlı, “Quantum Mechanical Calculations, Hirshfeld Surface Analysis, Molecular Docking, ADME and Toxicology Studies of the Ethyl 4-chloro-2-[(4-nitrophenyl)hydrazono]-3-oxobutrate Compound,” Int. Sci. Vocat. Stud. J., vol. 7, no. 2, pp. 109-121, 2023. doi: 10.47897/bilmes.1385170 CR - D. B. Kitchen, H. Decornez, J. R. Furr ve J. Bajorath, “Docking and scoring in virtual screening for drug discovery: methods and applications,” Nat. Rev. Drug Discov., vol. 3, no. 11, pp. 935-949, 2004. doi: 10.1038/nrd1549 CR - D. E. V. Wilman, “Triazenes as antitumor agents,” Med. Res. Rev., vol. 8, no. 1, pp. 1-20, 1988. doi: 10.1002/med.2610080102 CR - C. N. Cavasotto ve A. J. W. Orry, “Ligand docking and structure-based virtual screening in drug discovery,” Curr. Top. Med. Chem., vol. 7, no. 10, pp. 1006-1014, 2007. doi: 10.2174/156802607780906468 UR - https://doi.org/10.47897/bilmes.1697802 L1 - https://dergipark.org.tr/en/download/article-file/4863243 ER -