TY - JOUR T1 - Comparative Performance Analysis of Algorithm Applications Used in Determining EVFCS Locations TT - EAHŞİ Konumlarının Belirlenmesinde Kullanılan Algoritma Uygulamalarının Karşılaştırmalı Performans Analizi AU - Akar, Onur AU - Kaya, Fikret AU - Özkan, Pınar PY - 2025 DA - September Y2 - 2025 DO - 10.31466/kfbd.1699614 JF - Karadeniz Fen Bilimleri Dergisi JO - KFBD PB - Giresun University WT - DergiPark SN - 2564-7377 SP - 1306 EP - 1324 VL - 15 IS - 3 LA - en AB - With the increasing population, using petroleum and its derivatives in transportation has caused serious environmental problems, including global warming and urban air pollution. This situation has led to the widespread adoption of alternative fuel vehicles, especially Electric Vehicles (EVs), and determining station locations has become a popular research topic. Among the contributions of these studies to the literature are identifying the optimal locations for fast charging stations and space planning. Although numerous routing and charging calculation programs exist for EVs, nature-inspired optimization algorithms can be a valuable approach to addressing the challenges in routing and optimal placement. At the current stage of EV technology, when parameters such as vehicle range and available charging station locations are considered, there is a shortage of charging stations to facilitate efficient intercity travel. Therefore, determining the optimal locations for Electric Vehicles Fast Charging Stations (EVFCS) is a vital issue that needs to be addressed. Failure to identify optimal locations and to adequately plan fast charging stations may lead to problems for both EV owners and charging system operators, such as failing to meet charging demand at the desired level or underutilizing the planned fast charging stations. The main objective of station location planning is to obtain an optimal solution that maximizes the flow volume while simultaneously minimizing the installation costs of charging stations. This paper presents a comparative review of various EV optimal positioning techniques and algorithms used. In addition, it aims to determine the most suitable EVFCS points within the boundaries of Kavacik region of Beykoz district of Istanbul province by applying the geographical proximity-based Haversine algorithm and Analytical Hierarchy Process (AHP) algorithms, which are Multi-Criteria Decision-Making (MCDM) methods, separately. KW - Electric Vehicle KW - Electric Vehicle Charging Station KW - Location Determination KW - Algorithms N2 - Artan nüfusla birlikte ulaşımda petrol ve türevlerinin kullanılması, küresel ısınma ve kentsel hava kirliliği gibi ciddi çevresel sorunlara neden olmuştur. Bu durum, Elektrikli Araçlar (EA) başta olmak üzere alternatif yakıtlı araçların yaygın olarak benimsenmesine yol açmış ve istasyon konumlarının belirlenmesi popüler bir araştırma konusu haline gelmiştir. Bu çalışmaların literatüre katkıları arasında hızlı şarj istasyonları için en uygun yerlerin belirlenmesi ve alan planlaması yer almaktadır. EA'lar için çok sayıda rotalama ve şarj hesaplama programı mevcut olsa da doğadan ilham alan optimizasyon algoritmaları, rotalama ve optimum yerleştirmedeki zorlukları ele almak için değerli bir yaklaşım olabilir. EA teknolojisinin mevcut aşamasında, araç menzili ve mevcut şarj istasyonu konumları gibi parametreler göz önünde bulundurulduğunda, verimli şehirlerarası seyahati kolaylaştırmak için şarj istasyonu sıkıntısı yaşanmaktadır. Bu nedenle, Elektrikli Araç Hızlı Şarj İstasyonları (EAHŞİ) için en uygun konumların belirlenmesi, ele alınması gereken hayati bir konudur. Optimum konumların belirlenememesi ve hızlı şarj istasyonlarının yeterince planlanamaması hem elektrikli araç sahipleri hem de şarj sistemi operatörleri için şarj talebinin istenen düzeyde karşılanamaması veya planlanan hızlı şarj istasyonlarının yetersiz kullanılması gibi sorunlara yol açabilir. İstasyon yeri planlamasının temel amacı, akış hacmini en üst düzeye çıkarırken aynı zamanda şarj istasyonlarının kurulum maliyetlerini en aza indiren optimum bir çözüm elde etmektir. Bu makale, kullanılan çeşitli EA optimum konumlandırma teknikleri ve algoritmalarının karşılaştırmalı bir incelemesini sunmaktadır. Bunun yanında coğrafi yakınlık temelli Haversine algoritması ile Çok Kriterli Karar Verme (ÇKKV) yöntemi olan Analitik Hiyerarşi Süreci (AHP) algoritmalarını ayrı ayrı uygulayarak İstanbul ili Beykoz ilçesi Kavacık bölgesi sınırları içerisindeki en uygun EVFCS noktalarını belirlemeyi amaçlamaktadır. CR - Akar, O., Terzi, U. K., & Ozgönenel, O. (2022). Location of transformers during the extension of an electricity distribution network. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4048210 CR - Alabi, T. M., Lu, L., & Yang, Z. (2022). Data-driven optimal scheduling of multi-energy system virtual power plant (MEVPP) incorporating carbon capture system (CCS), electric vehicle flexibility, and clean energy marketer (CEM) strategy. Applied Energy, 314, 118997. https://doi.org/10.1016/j.apenergy.2022.118997 CR - Aliasghari, P., Mohammadi-Ivatloo, B., & Abapour, M. (2019). Risk-based scheduling strategy for electric vehicle aggregator using hybrid Stochastic/IGDT approach. Journal of Cleaner Production, 248, 119270. https://doi.org/10.1016/j.jclepro.2019.119270 CR - Alinia, B., Hajiesmaili, M. H., & Crespi, N. (2019). Online EV charging scheduling with On-Arrival commitment. IEEE Transactions on Intelligent Transportation Systems, 20(12), 4524–4537. https://doi.org/10.1109/tits.2018.2887194 CR - Alkan, T., Atiz, Ö. F., & Durduran, S. S. (2023). Suitable site selection for electric vehicle charging stations with AHP method: The case of Konya. Niğde Ömer Halisdemir University Journal of Engineering Sciences, 12(1), 193-199. https://doi.org/10.28948/ngumuh.1189242 CR - Al-Zaidi, W. K. M., & Inan, A. (2023). Optimal placement of battery swapping stations for power quality improvement: a novel multi Techno-Economic objective function approach. Energies, 17(1), 110. https://doi.org/10.3390/en17010110 CR - Azzouz, I., & Hassen, W. F. (2023). Optimization of electric vehicles charging scheduling based on deep reinforcement learning: a decentralized approach. Energies, 16(24), 8102. https://doi.org/10.3390/en16248102 CR - AYEDAS, “Vaniköy Electricity Distribution Network Information”. Vaniköy Operations Center, Istanbul. 2023. CR - Beheshtikhoo, A., Pourgholi, M., & Khazaee, I. (2023). Design of type-2 fuzzy logic controller in a smart home energy management system with a combination of renewable energy and an electric vehicle. Journal of Building Engineering, 68, 106097. https://doi.org/10.1016/j.jobe.2023.106097 CR - Bhadoria, A., & Marwaha, S. (2022). Optimal Generation Scheduling Considering Amalgamating Solar PV and Electric vehicle Power Generation Using Hybrid SMA-SOA Optimizer. 2022 IEEE Delhi Section Conference (DELCON). https://doi.org/10.1109/delcon54057.2022.9753466 CR - Bhushan, N., & Rai, K. (2004). The analytic hierarchy process. Decision Engineering, 11–21. https://doi.org/10.1007/978-1-85233-864-0_2 CR - Bouguerra, S., & Layeb, S. B. (2019). Determining optimal deployment of electric vehicles charging stations: Case of Tunis City, Tunisia. Case Studies on Transport Policy, 7(3), 628–642. https://doi.org/10.1016/j.cstp.2019.06.003 CR - Cao, Y., Huang, L., Li, Y., Jermsittiparsert, K., Ahmadi-Nezamabad, H., & Nojavan, S. (2019b). Optimal scheduling of electric vehicles aggregator under market price uncertainty using robust optimization technique. International Journal of Electrical Power & Energy Systems, 117, 105628. https://doi.org/10.1016/j.ijepes.2019.105628 CR - Chakraborty, N., Mondal, A., & Mondal, S. (2018a). Multi-objective heuristic charge scheduling and eco-routing mechanism for electric vehicles. Proceedings of the Ninth International Conference on Future Energy Systems, 468–470. CR - Cheng, N., She, L., & Chen, D. (2023). Electric vehicle charging scheduling optimization method based on improved Ant colony. Journal of Physics Conference Series, 2418(1), 012112. https://doi.org/10.1088/1742-6596/2418/1/012112 CR - Das, S., Acharjee, P., & Bhattacharya, A. (2020). Charging Scheduling of Electric Vehicle incorporating Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) technology in Smart-Grid. 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020). https://doi.org/10.1109/pesgre45664.2020.9070489 CR - Ding, Z., Lu, Y., Lai, K., Yang, M., & Lee, W. (2020). Optimal coordinated operation scheduling for electric vehicle aggregator and charging stations in an integrated electricity-transportation system. International Journal of Electrical Power & Energy Systems, 121, 106040. https://doi.org/10.1016/j.ijepes.2020.106040 CR - Guo, C., Wang, C., & Zuo, X. (2019). A genetic algorithm based column generation method for multi-depot electric bus vehicle scheduling. Proceedings of the Genetic and Evolutionary Computation Conference Companion. https://doi.org/10.1145/3319619.3321991 CR - Guo, S., Qiu, Z., Xiao, C., Liao, H., Huang, Y., Lei, T., Wu, D., & Jiang, Q. (2021). A multi-level vehicle-to-grid optimal scheduling approach with EV economic dispatching model. Energy Reports, 7, 22–37. https://doi.org/10.1016/j.egyr.2021.10.058 CR - Guo, Z., Yu, B., Li, K., Yang, Y., Yao, B., & Lin, Q. (2018). Locating battery supplying infrastructures for electric taxies. Transportation Letters, 12(2), 77–86. https://doi.org/10.1080/19427867.2018.1520449 CR - Hsaini, S., Ghogho, M., & Charaf, M. E. H. (2022). An OCPP-Based approach for Electric vehicle charging management. Energies, 15(18), 6735. https://doi.org/10.3390/en15186735 CR - Jamgochian, A. L., & Kochenderfer, M. J. (2019a). Stochastic model predictive control for scheduling charging of electric vehicle fleets with market power. 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE), 1–6. CR - Jordán, J., Palanca, J., Del Val, E., Julian, V., & Botti, V. (2018). A Multi-Agent system for the dynamic emplacement of electric vehicle charging stations. Applied Sciences, 8(2), 313. https://doi.org/10.3390/app8020313 CR - Kaya, F., & Akar, O. (2024b). Short circuit effects on HV feeders of optimally located electric vehicle fast charging stations. IEEE Access, 12, 47842–47853. https://doi.org/10.1109/access.2024.3383433 CR - Kaya, F. (2023). Analysis of the effects of electric vehicle fast charging stations on the grid. M.S. thesis, Dept. Electric. Edu., Marmara Univ., Istanbul, Türkiye. CR - Kaya, Ö., Alemdar, K. D., Atalay, A., Çodur, M. Y., & Tortum, A. (2022). Electric car sharing stations site selection from the perspective of sustainability: A GIS-based multi-criteria decision-making approach. Sustainable Energy Technologies and Assessments, 52, 102026. https://doi.org/10.1016/j.seta.2022.102026 CR - Kodeeswaran, S., Kannabhiran, A., & Nandhini, G. M. (2025). Implementation of V2G and G2V Methods with Distributed Generation for E-Mobility. In River Publishers eBooks (pp. 219–238). https://doi.org/10.1201/9788770046152-8 CR - Koufakis, A., Rigas, E. S., Bassiliades, N., & Ramchurn, S. D. (2019). Offline and online electric vehicle charging scheduling with V2V energy transfer. IEEE Transactions on Intelligent Transportation Systems, 21(5), 2128–2138. https://doi.org/10.1109/tits.2019.2914087 CR - Kułakowski, K. (2020). AHP as a decision-making method. Understanding the Analytic Hierarchy Process, 1–27. https://doi.org/10.1201/9781315392226-1 CR - Lee, S., & Choi, D. (2021). Dynamic pricing and energy management for profit maximization in multiple smart electric vehicle charging stations: A privacy-preserving deep reinforcement learning approach. Applied Energy, 304, 117754. https://doi.org/10.1016/j.apenergy.2021.117754 CR - Li, H., Zhan, J., Zhao, Z., & Wang, H. (2024). An improved particle swarm optimization algorithm based on variable neighborhood search. Mathematics, 12(17), 2708. https://doi.org/10.3390/math12172708 CR - Liu, Y., Wang, Y., Li, Y., Gooi, H. B., & Xin, H. (2020). Multi-Agent based optimal scheduling and trading for Multi-Microgrids integrated with urban transportation networks. IEEE Transactions on Power Systems, 36(3), 2197–2210. https://doi.org/10.1109/tpwrs.2020.3040310 CR - Mahyari, E., & Freeman, N. (2025). Electric vehicle fleet charging management: An approximate dynamic programming policy. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2025.04.031 CR - Micari, S., Polimeni, A., Napoli, G., Andaloro, L., & Antonucci, V. (2017). Electric vehicle charging infrastructure planning in a road network. Renewable and Sustainable Energy Reviews, 80, 98–108. https://doi.org/10.1016/j.rser.2017.05.022 CR - Moghaddam, S. Z., & Akbari, T. (2022). A mixed-integer linear programming model for the plug-in electric vehicle charging problem in unbalanced low voltage electrical distribution systems considering neutral conductor. Electric Power Systems Research, 209, 108049. https://doi.org/10.1016/j.epsr.2022.108049 CR - Mohammed, A., Saif, O., Abo-Adma, M. A., & Elazab, R. (2024). Multiobjective optimization for sizing and placing electric vehicle charging stations considering comprehensive uncertainties. Research Square (Research Square). https://doi.org/10.21203/rs.3.rs-4696351/v1 CR - Nejati, S. A., Chong, B., Alinejad, M., & Abbasi, S. (2021). Optimal scheduling of electric vehicles charging and discharging in a smart parking-lot. 2022 57th International Universities Power Engineering Conference (UPEC), 1–6. https://doi.org/10.1109/upec50034.2021.9548226 CR - Nimalsiri, N. I., Mediwaththe, C. P., Ratnam, E. L., Shaw, M., Smith, D. B., & Halgamuge, S. K. (2019). A survey of algorithms for distributed charging control of electric vehicles in smart grid. IEEE Transactions on Intelligent Transportation Systems, 21(11), 4497–4515. https://doi.org/10.1109/tits.2019.2943620 CR - Nurmuhammed, M., & Karadağ, T. (2021). Elektrikli Araç Şarj İstasyonlarının Konumlandırılması ve Enerji Şebekesi Üzerine Etkisi Konulu Derleme Çalışması. Gazi University Journal of Science Part A: Engineering and Innovation, 8(2), 218-233. CR - Paudel, A., Hussain, S. A., Sadiq, R., Zareipour, H., & Hewage, K. (2022). Decentralized Cooperative Approach for Electric Vehicle Charging. Journal of Cleaner Production, 364, 132590. CR - Petersen, P., & Sax, E. (2022). A fully automated methodology for the selection and extraction of Energy-Relevant features for the energy consumption of battery electric vehicles. SN Computer Science, 3(5). https://doi.org/10.1007/s42979-022-01233-7 CR - Raposo, J., Rodrigues, A., Silva, C., & Dentinho, T. (2015). A multi-criteria decision aid methodology to design electric vehicles public charging networks. AIP Advances, 5(5). https://doi.org/10.1063/1.4921087 CR - Shanmugam, P. K., & Thomas, P. (2024). Optimization Strategies for Electric Vehicle Charging and Routing: A Comprehensive Review. Gazi University Journal of Science, 37(3), 1256-1285. https://doi.org/10.35378/gujs.1321572 CR - Shen, J., Wang, L., & Zhang, J. (2021). Distributed charging control of electric vehicles in PV-based charging stations. 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), 995–1000. https://doi.org/10.1109/apec42165.2021.9487054 CR - Singh, V., Ganapathy, L., & Pundir, A. K. (2021). An improved genetic algorithm for solving multi depot vehicle routing problems. In IGI Global eBooks (pp. 375–402). https://doi.org/10.4018/978-1-7998-8048-6.ch020 CR - Sun, L. (2020). Site selection for evcss by GIS-based AHP Method. E3S Web of Conferences, 194, 05051. https://doi.org/10.1051/e3sconf/202019405051 CR - Wang, L., & Chen, B. (2019). Distributed control for large-scale plug-in electric vehicle charging with a consensus algorithm. International Journal of Electrical Power & Energy Systems, 109, 369–383. https://doi.org/10.1016/j.ijepes.2019.02.020 CR - Wang, Y., Yang, Z., Mourshed, M., Guo, Y., Niu, Q., & Zhu, X. (2019). Demand side management of plug-in electric vehicles and coordinated unit commitment: A novel parallel competitive swarm optimization method. Energy Conversion and Management, 196, 935–949. https://doi.org/10.1016/j.enconman.2019.06.012 CR - Xia, Y., Cheng, Z., Zhang, J., & Chen, X. (2025). User cost minimization and load balancing for multiple electric vehicle charging stations based on deep reinforcement learning. World Electric Vehicle Journal, 16(3), 184. https://doi.org/10.3390/wevj16030184 CR - Yalcin, G. D., Ozsoy, C. Y., & Taskin, Y. (2021). A multi-objective mathematical model for the electric vehicle charging station placement problem in urban areas. International Journal of Sustainable Energy, 41(8), 945–961. https://doi.org/10.1080/14786451.2021.2016761 CR - Yeni̇Gün, O., Boyar, T., & Yildiz, K. (2023). Determination of Optimal Location of Electrical Vehicle Charging Stations in Istanbul with Genetic Algorithm and Geographical Systems. Bilişim Teknolojileri Dergisi, 17(1), 1–9. https://doi.org/10.17671/gazibtd.1329029 CR - Zhang, R., Guo, J., & Wang, J. (2020). A Time-Dependent electric vehicle routing problem with congestion tolls. IEEE Transactions on Engineering Management, 69(4), 861–873. https://doi.org/10.1109/tem.2019.2959701 CR - Zheng, Y., Wang, Y., & Yang, Q. (2025). Market mechanism enabling electric vehicle grid integration: A critical review on operational frameworks, service provisions and optimization techniques. Sustainable Cities and Society, 106347. https://doi.org/10.1016/j.scs.2025.106347 CR - Zhou, K., Cheng, L., Wen, L., Lu, X., & Ding, T. (2020). A coordinated charging scheduling method for electric vehicles considering different charging demands. Energy, 213, 118882. https://doi.org/10.1016/j.energy.2020.118882 UR - https://doi.org/10.31466/kfbd.1699614 L1 - https://dergipark.org.tr/en/download/article-file/4871557 ER -