TY - JOUR T1 - Experimental Evaluation of Multi-Layer Brick and Adobe Materials TT - Çok Katmanlı Tuğla ve Kerpiç Malzemelerin Deneysel Değerlendirilmesi AU - Kıpçak, Fırat AU - Erdil, Barış PY - 2025 DA - August Y2 - 2025 DO - 10.54365/adyumbd.1702071 JF - Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi PB - Adıyaman University WT - DergiPark SN - 2149-0309 SP - 266 EP - 280 VL - 12 IS - 26 LA - en AB - The walls constituting the masonry structural system are quite fragile. As the wall height increases, the fragility increases as the number of units and joints increases. In walls made of brick and adobe material, more fragile structures are built due to the small number of units. There are not enough studies on how the increase in units changes the compressive strength of the wall. In this context, the study investigated the compression change in multi-layer brick and adobe materials due to the increase in height. Lime mixed mortar was used between the brick units while clay, fiber and water mixed mortar with the same properties was used between the adobe units. In the study, material properties of bricks, adobe and mortars were determined. It was determined that the compressive capacity decreased significantly as the wall height increased. According to the data obtained, an equation was proposed to predict the compressive capacity depending on the wall height for walls made of brick and adobe materials. The proposed equation and experimental results were found to be consistent. KW - Brick KW - Adobe KW - Multi-layer slenderness KW - Compression test N2 - Yığma yapı taşıyıcı sistemini oluşturan duvarlar oldukça narindir. Duvar yüksekliği arttıkça birim ve derz sayısı arttığı için narinlik artmaktadır. Tuğla ve kerpiç malzemesi ile yapılmış duvarlarda birimlerin küçük olması nedeniyle daha narin yapılar inşa edilmektedir. Birimlerin artışı duvar basınç dayanımını nasıl değiştirdiğine dair çalışma yeteri düzeyde bulunmamaktadır. Bu bağlamda çalışmada üst üste konulmuş tuğla ve kerpiç malzemelerinde yükseklik artışına bağlı olarak basınç değişimi araştırılmıştır. Tuğla birimleri arasında kireç karışımlı harç kullanılırken kerpiç birimleri arasında aynı özelliklere sahip kil, lif ve su karışımlı harç kullanılmıştır. Çalışmada tuğla, kerpiç ve harçların deneyleri yapılarak malzeme özellikleri belirlenmiştir. Duvar yüksekliği arttıkça basınç kapasitesinin önemli düzeyde düştüğü belirlenmiştir. Elde edilen verilere göre tuğla ve kerpiç malzemeleriyle üretilen duvarlar için duvar yüksekliğine bağlı olarak basınç kapasitesini tahmin etmek için denklem önerilmiştir. Önerilen denklem ve deney sonuçlarının tutarlı olduğu bulunmuştur. CR - Dazio A. The effect of the boundary conditions on the out-of-plane behaviour of unreinforced masonry walls. The 14 th World Conference on Earthquake Engineering, Beijing, China: 2008. CR - Kıpçak F, Erdil B. Yığma yapıların düzlem dışı davranışlarına yan duvarın ve yan duvar boşluğunun etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 2023;12:853–60. https://doi.org/10.28948/ngumuh.1268912. CR - Atailia S, Meftah SA, Fouchal F, Laib S eddine. Dynamic homogenization approach for in-plane and out-of-plane linear vibration analysis of masonry wall structures. Structural Design of Tall and Special Buildings 2020;29. https://doi.org/10.1002/tal.1802. CR - Anas S, Alam M, Umair M. Behavior and damage assessment of monolithic and non-monolithic braced masonry walls subjected to blast loadings using a detailed micro-modeling. International Journal of Masonry Research and Innovation 2022. CR - Shi Y, D’Ayala D, Prateek J. Analysis of Out-of-Plane Damage Behaviour of Unreinforced Masonry Walls. 14th International Brick & Block Masonry Conference, 2008, p. 2–17. CR - Kalali A, Kabir MZ. Experimental response of double-wythe masonry panels strengthened with glass fiber reinforced polymers subjected to diagonal compression tests. Eng Struct 2012;39:24–37. https://doi.org/10.1016/j.engstruct.2012.01.018. CR - Fallahi M, Sayyar Roudari S, Haghighifar M, Madandoost R, Sayyar Roudsari S, Fallahi in Structural M. Modeling of reinforced concrete frames with Infill walls under cyclic loading Strengthening with CFRP. American Journal of Engineering and Applied Sciences 2018. https://doi.org/10.3844/ajeassp.2018.1086.1099ï. CR - Ghaderi M, Maleki V, Andalibi K. Retrofitting of Unreinforced Masonry Walls under Blast Loading by FRP and Spray on Polyurea. Cumhuriyet Science Journal 2015;36. https://doi.org/10.17776/CSJ.82511. CR - Paruta VA, Zade N, Davis R, Sarkar P. Experimental Investigation of Autoclaved Aerated Concrete Masonry. Magazine of Civil Engineering 2014;47:48–55. https://doi.org/10.5862/MCE.47.5. CR - Cancellara D, De Angelis F, Pasquino V. Characterization of an autoclaved aerated concrete building with respect to a similar unreinforced masonry structure. Adv Mat Res 2012;476–478:847–58. https://doi.org/10.4028/www.scientific.net/AMR.476-478.847. CR - Budak A, Uysal H, Aydin AC. Kırsal yapıların deprem karşısındaki davranışı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 2004;35:3–4. CR - Gençer F, Hamamcıoğlu Turan M, Vardaroğlu M, Aktaş E. Evaluation of structural strength of two hellenistic towers in Alinda, Latmos and Caria. Uluslararası Katılımlı 6. Tarihi Yapıların Korunması ve Güçlendirilmesi Sempozyumu, 2017. CR - Kıpçak F. Tilting Table Experiments to Determine the Out-Of-Plane Behavior of Masonry Structures Which Side Wall Hollow is Constructed From Brick. Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, 2018. CR - Erdik M, Demircioğlu M, Beyen K, Şeşetyan K, Aydınoğlu N, Gul M, et al. May 01, 2003 Bingöl (Türkiye) Earthquake. İstanbul: 2003. CR - Bakır S, Canbay E, Erberik A, Gülerce Z, Aldemir A, Demirel İO. 8 Mart 2010 Bașyurt-Karakoçan (Elazığ) Depremi Ön İnceleme Raporu. Ankara: 2010. CR - Carneau P, Mesnil R, Roussel N, Baverel O. Additive manufacturing of cantilever - From masonry to concrete 3D printing. Autom Constr 2020;116:103184. https://doi.org/10.1016/J.Autcon.2020.103184. CR - Khan SA, Jassim M, Ilcan H, Sahin O, Bayer İR, Sahmaran M, et al. 3D printing of circular materials: Comparative environmental analysis of materials and construction techniques. Case Studies in Construction Materials 2023;18:e02059. https://doi.org/10.1016/J.CSCM.2023.E02059. CR - Özkılıç H, İlcan H, Aminipour E, Tuğluca MS, Aldemir A, Şahmaran M. Bond properties and anisotropy performance of 3D-printed construction and demolition waste-based geopolymers: Effect of operational- and material-oriented parameters. Journal of Building Engineering 2023;78:107688. https://doi.org/10.1016/J.JOBE.2023.107688. CR - Erdil B, Tapan M, Akkaya İ, Korkut F. Effects of structural parameters on seismic behaviour of historical masonry minaret. Periodica Polytechnica Civil Engineering 2018;62. https://doi.org/10.3311/PPci.10687. CR - Akansel V, Ameri G, Askan A, Caner A, Erdil B, Kale Ö, et al. The 23 october 2011 Mw7.0 van (Eastern Türkiye) earthquake: Interpretations of recorded strong ground motions and post-earthquake conditions of nearby structures. Earthquake Spectra 2014;30:657–82. https://doi.org/10.1193/012912EQS020M. CR - Maccarini H, Vasconcelos G, Rodrigues H, Ortega J, Lourenço PB. Out-of-plane behavior of stone masonry walls: Experimental and numerical analysis. Constr Build Mater 2018;179:430–52. https://doi.org/10.1016/j.conbuildmat.2018.05.216. CR - Restrepo-Vélez LF, Magenes G, Griffith MC. Dry stone masonry walls in bending-Part I: Static tests. International Journal of Architectural Heritage 2014;8:1–28. https://doi.org/10.1080/15583058.2012.663059. CR - Al-Zuhairi AH, Ahmed AR. Height-to-Length Ratio Effect on The Response of Unreinforced Masonry Wall Subjected to Vertical Load Using Detailed-Micro Modeling Approach. International Journal of Science and Research (IJSR) 2018. CR - Karasin A. Bingöl depreminde meydana gelen yapısal hasarların irdelenmesi. Deprem Sempozyumu Kocaeli 2005, Kocaeli: 2005. CR - Shawa O Al, de Felice G, Mauro A, Sorrentino L. Out-of-plane seismic behaviour of rocking masonry walls. Earthq Eng Struct Dyn 2012;41:949–68. https://doi.org/10.1002/eqe.1168. CR - Kıpçak F, Erdil B. Effect of adobe wall shapes and openings on out-of-plane behavior. Structures 2025;77:109090. https://doi.org/10.1016/J.ISTRUC.2025.109090. CR - Erdil B, Kıpçak F, Tapan M. Out-of-plane behavior of dry-stack brick masonry walls. The Structural Design of Tall and Special Buildings 2024;33:e2089. https://doi.org/https://doi.org/10.1002/tal.2089. CR - Usta P. Investigation of a Base-Isolator System’s Effects on the Seismic Behavior of a Historical Structure. Buildings 2021, Vol 11, Page 217 2021;11:217. https://doi.org/10.3390/BUILDINGS11050217. CR - Abdulla KF, Cunningham LS, Gillie M. Simulating masonry wall behaviour using a simplified micro-model approach. Eng Struct 2017;151:349–65. https://doi.org/10.1016/j.engstruct.2017.08.021. CR - Shing PB, Schuller M, Hoskere VS. In-Plane Resistance of Reinforced Masonry Shear Walls. Journal of Structural Engineering 1990;116:619–40. https://doi.org/10.1061/(asce)0733-9445(1990)116:3(619). CR - Tarque N, Camata G, Espacone E, Varum H, Blondet M. Numerical modelling of in-plane behaviour of adobe walls. Sismica 2010 - 8th Congresso de Sismologia e Engenharia Sismica, 2010. CR - ASTM C67/C67M-23. ASTM C67/C67M-23: Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile 2023. CR - ASTM C1314-14. ASTM C1314-14: Standard Test Method for Compressive Strength of Masonry Prisms 2014. CR - TS EN 772-1. Methods of test for mortar for masonry units - Part 1: Determination of compressive strength. Ankara, Türkiye: 2012. CR - Rahgozar A, Hosseini A. Experimental and numerical assessment of in-plane monotonic response of ancient mortar brick masonry. Constr Build Mater 2017;155:892–909. https://doi.org/10.1016/J.Conbuildmat.2017.08.079. CR - Candeias PX, Campos Costa A, Mendes N, Costa AA, Lourenço PB. Experimental Assessment of the Out-of-Plane Performance of Masonry Buildings Through Shaking Table Tests. International Journal of Architectural Heritage 2017;11:31–58. https://doi.org/10.1080/15583058.2016.1238975. CR - ASTM D790-21. ASTM D790-21: Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials 2021. CR - BS EN 12390-5. BS EN 12390-5: Testing Hardened Concrete - Part 5: Flexural Strength of Concrete 2009. CR - Piani TL, Krabbenborg D, Weerheijm J, Koene L, Sluijs LJ. The Mechanical Performance Of Traditional Adobe Masonry Components: An Experimental-Analytical Characterization Of Soil Bricks And Mud Mortar. Journal of Green Building 2018;13:17–44. https://doi.org/10.3992/1943-4618.13.3.17. CR - Serrano S, Barreneche C, Cabeza LF. Use of by-products as additives in adobe bricks: Mechanical properties characterisation. Constr Build Mater 2016;108. https://doi.org/10.1016/j.conbuildmat.2016.01.044. CR - Vatani Oskouei A, Afzali M, Madadipour M. Experimental investigation on mud bricks reinforced with natural additives under compressive and tensile tests. Constr Build Mater 2017;142:137–47. https://doi.org/10.1016/J.Conbuildmat.2017.03.065. CR - TBDY. Türkiye Bina Deprem Yönetmeliği (Türkiye Building Earthquake Regulation). Ankara, Türkiye: Republic of Türkiye Ministry of Environment and Urbanization; 2018. CR - Europe-6. Eurocode 6 - Design of masonry structures - Part 1-1: General rules for reinforced and unreinforced masonry structures structures. Belgium: 2005. UR - https://doi.org/10.54365/adyumbd.1702071 L1 - https://dergipark.org.tr/en/download/article-file/4882402 ER -